Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,21 +9,19 @@ from transformers import pipeline, AutoModel, AutoTokenizer
|
|
9 |
import PyPDF2
|
10 |
import gradio as gr
|
11 |
import openai
|
12 |
-
|
13 |
-
|
|
|
14 |
|
15 |
# تحميل وتفعيل الأدوات المطلوبة
|
16 |
nltk.download('punkt')
|
17 |
|
18 |
# التحقق من توفر GPU واستخدامه
|
19 |
-
device = 0
|
20 |
|
21 |
# تحميل نماذج التحليل اللغوي
|
22 |
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
|
23 |
|
24 |
-
# تحميل نموذج التعرف على الكيانات في camel_tools
|
25 |
-
ner = NERecognizer.pretrained()
|
26 |
-
|
27 |
# تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
|
28 |
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic")
|
29 |
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic")
|
@@ -37,22 +35,14 @@ arabic_electra_model = AutoModel.from_pretrained("aubmindlab/araelectra-base-dis
|
|
37 |
arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02")
|
38 |
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02")
|
39 |
|
40 |
-
# إعداد OpenAI API
|
41 |
-
openai.api_key = os.getenv("sk-proj-62TDbO5KABSdkZaFPPD4T3BlbkFJkhqOYpHhL6OucTzNdWSU")
|
42 |
-
|
43 |
-
# إعداد farm-haystack
|
44 |
-
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
|
45 |
-
|
46 |
-
# إعداد paddlenlp
|
47 |
-
ner_task = Taskflow("ner")
|
48 |
-
|
49 |
# دالة لتحليل النص باستخدام camel_tools
|
50 |
def camel_ner_analysis(text):
|
|
|
51 |
tokens = simple_word_tokenize(text)
|
52 |
entities = ner.predict(tokens)
|
53 |
entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
|
54 |
for token, tag in zip(tokens, entities):
|
55 |
-
|
56 |
entity_dict[tag].append((token, tag))
|
57 |
return entity_dict
|
58 |
|
@@ -71,7 +61,7 @@ def nltk_extract_quotes(text):
|
|
71 |
quotes = []
|
72 |
sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
|
73 |
for sentence in sentences:
|
74 |
-
|
75 |
quotes.append(sentence)
|
76 |
return quotes
|
77 |
|
@@ -82,10 +72,10 @@ def count_tokens(text):
|
|
82 |
|
83 |
# دالة لاستخراج النص من ملفات PDF
|
84 |
def extract_pdf_text(file_path):
|
85 |
-
|
86 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
87 |
text = ""
|
88 |
-
|
89 |
page = pdf_reader.pages[page_num]
|
90 |
text += page.extract_text()
|
91 |
return text
|
@@ -93,7 +83,7 @@ def extract_pdf_text(file_path):
|
|
93 |
# دالة لاستخراج المشاهد من النص
|
94 |
def extract_scenes(text):
|
95 |
scenes = re.split(r'داخلي|خارجي', text)
|
96 |
-
scenes = [scene.strip() for scene in scenes
|
97 |
return scenes
|
98 |
|
99 |
# دالة لاستخراج تفاصيل المشهد (المكان والوقت)
|
@@ -102,9 +92,9 @@ def extract_scene_details(scene):
|
|
102 |
location_match = re.search(r'(داخلي|خارجي)', scene)
|
103 |
time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب)', scene)
|
104 |
|
105 |
-
|
106 |
details['location'] = location_match.group()
|
107 |
-
|
108 |
details['time'] = time_match.group()
|
109 |
|
110 |
return details
|
@@ -135,11 +125,11 @@ def analyze_and_complete(file_paths):
|
|
135 |
results = []
|
136 |
output_directory = os.getenv("SPACE_DIR", "/app/output")
|
137 |
|
138 |
-
|
139 |
-
|
140 |
text = extract_pdf_text(file_path)
|
141 |
else:
|
142 |
-
|
143 |
text = file.read()
|
144 |
|
145 |
filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
|
@@ -155,47 +145,47 @@ def analyze_and_complete(file_paths):
|
|
155 |
character_frequency = extract_character_frequency(camel_entities)
|
156 |
dialogues = extract_dialogues(text)
|
157 |
|
158 |
-
scene_details = [extract_scene_details(scene)
|
159 |
|
160 |
# حفظ النتائج إلى ملفات
|
161 |
-
|
162 |
file.write(str(camel_entities))
|
163 |
|
164 |
-
|
165 |
file.write(str(sentiments))
|
166 |
|
167 |
-
|
168 |
file.write("\n".join(sentences))
|
169 |
|
170 |
-
|
171 |
file.write("\n".join(quotes))
|
172 |
|
173 |
-
|
174 |
file.write(str(token_count))
|
175 |
|
176 |
-
|
177 |
file.write("\n".join(scenes))
|
178 |
|
179 |
-
|
180 |
file.write(str(scene_details))
|
181 |
|
182 |
-
|
183 |
file.write(str(ages))
|
184 |
|
185 |
-
|
186 |
file.write(str(character_descriptions))
|
187 |
|
188 |
-
|
189 |
file.write(str(character_frequency))
|
190 |
|
191 |
-
|
192 |
file.write(str(dialogues))
|
193 |
|
194 |
results.append((str(camel_entities), str(sentiments), "\n".join(sentences), "\n".join(quotes), str(token_count), "\n".join(scenes), str(scene_details), str(ages), str(character_descriptions), str(character_frequency), str(dialogues)))
|
195 |
|
196 |
return results
|
197 |
|
198 |
-
|
199 |
interface = gr.Interface(
|
200 |
fn=analyze_and_complete,
|
201 |
inputs=gr.File(file_count="multiple", type="filepath"),
|
|
|
9 |
import PyPDF2
|
10 |
import gradio as gr
|
11 |
import openai
|
12 |
+
|
13 |
+
# تعيين التوكن الخاص بـ OpenAI
|
14 |
+
openai.api_key = "sk-proj-62TDbO5KABSdkZaFPPD4T3BlbkFJkhqOYpHhL6OucTzNdWSU"
|
15 |
|
16 |
# تحميل وتفعيل الأدوات المطلوبة
|
17 |
nltk.download('punkt')
|
18 |
|
19 |
# التحقق من توفر GPU واستخدامه
|
20 |
+
device = 0 إذا torch.cuda.is_available() else -1
|
21 |
|
22 |
# تحميل نماذج التحليل اللغوي
|
23 |
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
|
24 |
|
|
|
|
|
|
|
25 |
# تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
|
26 |
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic")
|
27 |
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic")
|
|
|
35 |
arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02")
|
36 |
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02")
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# دالة لتحليل النص باستخدام camel_tools
|
39 |
def camel_ner_analysis(text):
|
40 |
+
ner = NERecognizer.pretrained()
|
41 |
tokens = simple_word_tokenize(text)
|
42 |
entities = ner.predict(tokens)
|
43 |
entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
|
44 |
for token, tag in zip(tokens, entities):
|
45 |
+
إذا tag in entity_dict:
|
46 |
entity_dict[tag].append((token, tag))
|
47 |
return entity_dict
|
48 |
|
|
|
61 |
quotes = []
|
62 |
sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
|
63 |
for sentence in sentences:
|
64 |
+
إذا '"' in sentence أو '«' in sentence أو '»' in sentence:
|
65 |
quotes.append(sentence)
|
66 |
return quotes
|
67 |
|
|
|
72 |
|
73 |
# دالة لاستخراج النص من ملفات PDF
|
74 |
def extract_pdf_text(file_path):
|
75 |
+
مع open(file_path, "rb") كما pdf_file:
|
76 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
77 |
text = ""
|
78 |
+
لكل page_num in range(len(pdf_reader.pages)):
|
79 |
page = pdf_reader.pages[page_num]
|
80 |
text += page.extract_text()
|
81 |
return text
|
|
|
83 |
# دالة لاستخراج المشاهد من النص
|
84 |
def extract_scenes(text):
|
85 |
scenes = re.split(r'داخلي|خارجي', text)
|
86 |
+
scenes = [scene.strip() for scene in scenes إذا scene.strip()]
|
87 |
return scenes
|
88 |
|
89 |
# دالة لاستخراج تفاصيل المشهد (المكان والوقت)
|
|
|
92 |
location_match = re.search(r'(داخلي|خارجي)', scene)
|
93 |
time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب)', scene)
|
94 |
|
95 |
+
إذا location_match:
|
96 |
details['location'] = location_match.group()
|
97 |
+
إذا time_match:
|
98 |
details['time'] = time_match.group()
|
99 |
|
100 |
return details
|
|
|
125 |
results = []
|
126 |
output_directory = os.getenv("SPACE_DIR", "/app/output")
|
127 |
|
128 |
+
لكل file_path in file_paths:
|
129 |
+
إذا file_path.endswith(".pdf"):
|
130 |
text = extract_pdf_text(file_path)
|
131 |
else:
|
132 |
+
مع open(file_path, "r", encoding="utf-8") كما file:
|
133 |
text = file.read()
|
134 |
|
135 |
filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
|
|
|
145 |
character_frequency = extract_character_frequency(camel_entities)
|
146 |
dialogues = extract_dialogues(text)
|
147 |
|
148 |
+
scene_details = [extract_scene_details(scene) لكل scene in scenes]
|
149 |
|
150 |
# حفظ النتائج إلى ملفات
|
151 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_entities.txt"), "w", encoding="utf-8") كما file:
|
152 |
file.write(str(camel_entities))
|
153 |
|
154 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_sentiments.txt"), "w", encoding="utf-8") كما file:
|
155 |
file.write(str(sentiments))
|
156 |
|
157 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_sentences.txt"), "w", encoding="utf-8") كما file:
|
158 |
file.write("\n".join(sentences))
|
159 |
|
160 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_quotes.txt"), "w", encoding="utf-8") كما file:
|
161 |
file.write("\n".join(quotes))
|
162 |
|
163 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_token_count.txt"), "w", encoding="utf-8") كما file:
|
164 |
file.write(str(token_count))
|
165 |
|
166 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_scenes.txt"), "w", encoding="utf-8") كما file:
|
167 |
file.write("\n".join(scenes))
|
168 |
|
169 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_scene_details.txt"), "w", encoding="utf-8") كما file:
|
170 |
file.write(str(scene_details))
|
171 |
|
172 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_ages.txt"), "w", encoding="utf-8") كما file:
|
173 |
file.write(str(ages))
|
174 |
|
175 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_character_descriptions.txt"), "w", encoding="utf-8") كما file:
|
176 |
file.write(str(character_descriptions))
|
177 |
|
178 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_character_frequency.txt"), "w", encoding="utf-8") كما file:
|
179 |
file.write(str(character_frequency))
|
180 |
|
181 |
+
مع open(os.path.join(output_directory, f"{filename_prefix}_dialogues.txt"), "w", encoding="utf-8") كما file:
|
182 |
file.write(str(dialogues))
|
183 |
|
184 |
results.append((str(camel_entities), str(sentiments), "\n".join(sentences), "\n".join(quotes), str(token_count), "\n".join(scenes), str(scene_details), str(ages), str(character_descriptions), str(character_frequency), str(dialogues)))
|
185 |
|
186 |
return results
|
187 |
|
188 |
+
## تعريف واجهة Gradio
|
189 |
interface = gr.Interface(
|
190 |
fn=analyze_and_complete,
|
191 |
inputs=gr.File(file_count="multiple", type="filepath"),
|