Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
2 |
import re
|
3 |
from camel_tools.tokenizers.word import simple_word_tokenize
|
|
|
4 |
import nltk
|
5 |
import torch
|
6 |
from collections import Counter
|
@@ -8,6 +9,8 @@ from transformers import pipeline, AutoModel, AutoTokenizer
|
|
8 |
import PyPDF2
|
9 |
import gradio as gr
|
10 |
import openai
|
|
|
|
|
11 |
|
12 |
# تحميل وتفعيل الأدوات المطلوبة
|
13 |
nltk.download('punkt')
|
@@ -15,42 +18,38 @@ nltk.download('punkt')
|
|
15 |
# التحقق من توفر GPU واستخدامه
|
16 |
device = 0 if torch.cuda.is_available() else -1
|
17 |
|
18 |
-
# إعداد التوكنات
|
19 |
-
openai.api_key = "sk-proj-62TDbO5KABSdkZaFPPD4T3BlbkFJkhqOYpHhL6OucTzNdWSU"
|
20 |
-
|
21 |
# تحميل نماذج التحليل اللغوي
|
22 |
-
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device
|
|
|
|
|
|
|
23 |
|
24 |
# تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
|
25 |
-
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic"
|
26 |
-
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic"
|
27 |
|
28 |
-
arabic_gpt2_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-base"
|
29 |
-
arabic_gpt2_model = AutoModel.from_pretrained("aubmindlab/aragpt2-base"
|
30 |
|
31 |
-
arabic_electra_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/araelectra-base-discriminator"
|
32 |
-
arabic_electra_model = AutoModel.from_pretrained("aubmindlab/araelectra-base-discriminator"
|
33 |
|
34 |
-
arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02"
|
35 |
-
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02"
|
36 |
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
# دالة لتحليل النص باستخدام
|
47 |
def camel_ner_analysis(text):
|
48 |
-
tokenizer = AutoTokenizer.from_pretrained("camel-ai/arabert-ner", use_auth_token=huggingface_token)
|
49 |
-
model = AutoModel.from_pretrained("camel-ai/arabert-ner", use_auth_token=huggingface_token)
|
50 |
tokens = simple_word_tokenize(text)
|
51 |
-
|
52 |
-
outputs = model(**inputs)
|
53 |
-
entities = outputs.logits.argmax(dim=-1).squeeze().tolist()
|
54 |
entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
|
55 |
for token, tag in zip(tokens, entities):
|
56 |
if tag in entity_dict:
|
@@ -134,7 +133,7 @@ def extract_dialogues(text):
|
|
134 |
# دالة لتحليل النصوص واستخراج المعلومات وحفظ النتائج
|
135 |
def analyze_and_complete(file_paths):
|
136 |
results = []
|
137 |
-
output_directory = "
|
138 |
|
139 |
for file_path in file_paths:
|
140 |
if file_path.endswith(".pdf"):
|
|
|
1 |
import os
|
2 |
import re
|
3 |
from camel_tools.tokenizers.word import simple_word_tokenize
|
4 |
+
from camel_tools.ner import NERecognizer
|
5 |
import nltk
|
6 |
import torch
|
7 |
from collections import Counter
|
|
|
9 |
import PyPDF2
|
10 |
import gradio as gr
|
11 |
import openai
|
12 |
+
from haystack.nodes import FARMReader
|
13 |
+
from paddlenlp import Taskflow
|
14 |
|
15 |
# تحميل وتفعيل الأدوات المطلوبة
|
16 |
nltk.download('punkt')
|
|
|
18 |
# التحقق من توفر GPU واستخدامه
|
19 |
device = 0 if torch.cuda.is_available() else -1
|
20 |
|
|
|
|
|
|
|
21 |
# تحميل نماذج التحليل اللغوي
|
22 |
+
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
|
23 |
+
|
24 |
+
# تحميل نموذج التعرف على الكيانات في camel_tools
|
25 |
+
ner = NERecognizer.pretrained()
|
26 |
|
27 |
# تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
|
28 |
+
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic")
|
29 |
+
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic")
|
30 |
|
31 |
+
arabic_gpt2_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-base")
|
32 |
+
arabic_gpt2_model = AutoModel.from_pretrained("aubmindlab/aragpt2-base")
|
33 |
|
34 |
+
arabic_electra_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/araelectra-base-discriminator")
|
35 |
+
arabic_electra_model = AutoModel.from_pretrained("aubmindlab/araelectra-base-discriminator")
|
36 |
|
37 |
+
arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02")
|
38 |
+
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02")
|
39 |
|
40 |
+
# إعداد OpenAI API
|
41 |
+
openai.api_key = os.getenv("sk-proj-62TDbO5KABSdkZaFPPD4T3BlbkFJkhqOYpHhL6OucTzNdWSU")
|
42 |
|
43 |
+
# إعداد farm-haystack
|
44 |
+
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
|
45 |
|
46 |
+
# إعداد paddlenlp
|
47 |
+
ner_task = Taskflow("ner")
|
48 |
|
49 |
+
# دالة لتحليل النص باستخدام camel_tools
|
50 |
def camel_ner_analysis(text):
|
|
|
|
|
51 |
tokens = simple_word_tokenize(text)
|
52 |
+
entities = ner.predict(tokens)
|
|
|
|
|
53 |
entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
|
54 |
for token, tag in zip(tokens, entities):
|
55 |
if tag in entity_dict:
|
|
|
133 |
# دالة لتحليل النصوص واستخراج المعلومات وحفظ النتائج
|
134 |
def analyze_and_complete(file_paths):
|
135 |
results = []
|
136 |
+
output_directory = os.getenv("SPACE_DIR", "/app/output")
|
137 |
|
138 |
for file_path in file_paths:
|
139 |
if file_path.endswith(".pdf"):
|