Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,8 @@ from transformers import pipeline
|
|
6 |
import PyPDF2
|
7 |
import gradio as gr
|
8 |
|
9 |
-
#
|
|
|
10 |
nlp = spacy.load("en_core_web_sm")
|
11 |
nltk.download('punkt')
|
12 |
|
@@ -14,7 +15,6 @@ nltk.download('punkt')
|
|
14 |
device = 0 if torch.cuda.is_available() else -1
|
15 |
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
|
16 |
|
17 |
-
# Define functions for text analysis
|
18 |
def spacy_ner_analysis(text):
|
19 |
doc = nlp(text)
|
20 |
entities = [(ent.text, ent.label_) for ent in doc.ents]
|
@@ -45,33 +45,6 @@ def extract_pdf_text(file_path):
|
|
45 |
text += page.extract_text()
|
46 |
return text
|
47 |
|
48 |
-
def analyze_text(text):
|
49 |
-
try:
|
50 |
-
result = analyzer(text)
|
51 |
-
return result
|
52 |
-
except Exception as e:
|
53 |
-
print(f"Error analyzing text: {str(e)}")
|
54 |
-
return ""
|
55 |
-
|
56 |
-
def process_text(text, output_directory, filename_prefix):
|
57 |
-
spacy_entities = spacy_ner_analysis(text)
|
58 |
-
sentences = nltk_extract_sentences(text)
|
59 |
-
quotes = nltk_extract_quotes(text)
|
60 |
-
token_count = count_tokens(text)
|
61 |
-
|
62 |
-
# Save results to files
|
63 |
-
with open(os.path.join(output_directory, f"{filename_prefix}_spacy_entities.txt"), "w", encoding="utf-8") as file:
|
64 |
-
file.write(str(spacy_entities))
|
65 |
-
|
66 |
-
with open(os.path.join(output_directory, f"{filename_prefix}_sentences.txt"), "w", encoding="utf-8") as file:
|
67 |
-
file.write("\n".join(sentences))
|
68 |
-
|
69 |
-
with open(os.path.join(output_directory, f"{filename_prefix}_quotes.txt"), "w", encoding="utf-8") as file:
|
70 |
-
file.write("\n".join(quotes))
|
71 |
-
|
72 |
-
with open(os.path.join(output_directory, f"{filename_prefix}_token_count.txt"), "w", encoding="utf-8") as file:
|
73 |
-
file.write(str(token_count))
|
74 |
-
|
75 |
def analyze_and_complete(file_path):
|
76 |
if file_path.endswith(".pdf"):
|
77 |
text = extract_pdf_text(file_path)
|
@@ -81,7 +54,6 @@ def analyze_and_complete(file_path):
|
|
81 |
|
82 |
output_directory = "/Users/Home/Library/Mobile Documents/com~apple~CloudDocs/osa/ุณููุงุฑูููุงุช/ููุงูู ุงููู ูููุฉ"
|
83 |
filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
|
84 |
-
process_text(text, output_directory, filename_prefix)
|
85 |
|
86 |
spacy_entities = spacy_ner_analysis(text)
|
87 |
sentences = nltk_extract_sentences(text)
|
@@ -100,4 +72,4 @@ interface = gr.Interface(
|
|
100 |
)
|
101 |
|
102 |
if __name__ == "__main__":
|
103 |
-
interface.launch(
|
|
|
6 |
import PyPDF2
|
7 |
import gradio as gr
|
8 |
|
9 |
+
# Download and initialize required tools
|
10 |
+
spacy.cli.download("en_core_web_sm")
|
11 |
nlp = spacy.load("en_core_web_sm")
|
12 |
nltk.download('punkt')
|
13 |
|
|
|
15 |
device = 0 if torch.cuda.is_available() else -1
|
16 |
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
|
17 |
|
|
|
18 |
def spacy_ner_analysis(text):
|
19 |
doc = nlp(text)
|
20 |
entities = [(ent.text, ent.label_) for ent in doc.ents]
|
|
|
45 |
text += page.extract_text()
|
46 |
return text
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def analyze_and_complete(file_path):
|
49 |
if file_path.endswith(".pdf"):
|
50 |
text = extract_pdf_text(file_path)
|
|
|
54 |
|
55 |
output_directory = "/Users/Home/Library/Mobile Documents/com~apple~CloudDocs/osa/ุณููุงุฑูููุงุช/ููุงูู ุงููู ูููุฉ"
|
56 |
filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
|
|
|
57 |
|
58 |
spacy_entities = spacy_ner_analysis(text)
|
59 |
sentences = nltk_extract_sentences(text)
|
|
|
72 |
)
|
73 |
|
74 |
if __name__ == "__main__":
|
75 |
+
interface.launch()
|