Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,13 @@
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
-
import camel_tools
|
| 4 |
from camel_tools.tokenizers.word import simple_word_tokenize
|
| 5 |
-
from camel_tools.ner import NERecognizer
|
| 6 |
import nltk
|
| 7 |
import torch
|
| 8 |
from collections import Counter
|
| 9 |
from transformers import pipeline, AutoModel, AutoTokenizer
|
| 10 |
import PyPDF2
|
| 11 |
import gradio as gr
|
|
|
|
| 12 |
|
| 13 |
# تحميل وتفعيل الأدوات المطلوبة
|
| 14 |
nltk.download('punkt')
|
|
@@ -16,29 +15,42 @@ nltk.download('punkt')
|
|
| 16 |
# التحقق من توفر GPU واستخدامه
|
| 17 |
device = 0 if torch.cuda.is_available() else -1
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
|
| 22 |
-
# تحميل
|
| 23 |
-
|
| 24 |
|
| 25 |
# تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
|
| 26 |
-
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic")
|
| 27 |
-
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
|
| 38 |
-
# دالة لتحليل النص باستخدام
|
| 39 |
def camel_ner_analysis(text):
|
|
|
|
|
|
|
| 40 |
tokens = simple_word_tokenize(text)
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
|
| 43 |
for token, tag in zip(tokens, entities):
|
| 44 |
if tag in entity_dict:
|
|
@@ -122,7 +134,7 @@ def extract_dialogues(text):
|
|
| 122 |
# دالة لتحليل النصوص واستخراج المعلومات وحفظ النتائج
|
| 123 |
def analyze_and_complete(file_paths):
|
| 124 |
results = []
|
| 125 |
-
output_directory =
|
| 126 |
|
| 127 |
for file_path in file_paths:
|
| 128 |
if file_path.endswith(".pdf"):
|
|
|
|
| 1 |
import os
|
| 2 |
import re
|
|
|
|
| 3 |
from camel_tools.tokenizers.word import simple_word_tokenize
|
|
|
|
| 4 |
import nltk
|
| 5 |
import torch
|
| 6 |
from collections import Counter
|
| 7 |
from transformers import pipeline, AutoModel, AutoTokenizer
|
| 8 |
import PyPDF2
|
| 9 |
import gradio as gr
|
| 10 |
+
import openai
|
| 11 |
|
| 12 |
# تحميل وتفعيل الأدوات المطلوبة
|
| 13 |
nltk.download('punkt')
|
|
|
|
| 15 |
# التحقق من توفر GPU واستخدامه
|
| 16 |
device = 0 if torch.cuda.is_available() else -1
|
| 17 |
|
| 18 |
+
# إعداد التوكنات
|
| 19 |
+
openai.api_key = "sk-proj-62TDbO5KABSdkZaFPPD4T3BlbkFJkhqOYpHhL6OucTzNdWSU"
|
| 20 |
|
| 21 |
+
# تحميل نماذج التحليل اللغوي
|
| 22 |
+
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device, use_auth_token=huggingface_token)
|
| 23 |
|
| 24 |
# تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
|
| 25 |
+
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic", use_auth_token=huggingface_token)
|
| 26 |
+
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic", use_auth_token=huggingface_token)
|
| 27 |
+
|
| 28 |
+
arabic_gpt2_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-base", use_auth_token=huggingface_token)
|
| 29 |
+
arabic_gpt2_model = AutoModel.from_pretrained("aubmindlab/aragpt2-base", use_auth_token=huggingface_token)
|
| 30 |
+
|
| 31 |
+
arabic_electra_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/araelectra-base-discriminator", use_auth_token=huggingface_token)
|
| 32 |
+
arabic_electra_model = AutoModel.from_pretrained("aubmindlab/araelectra-base-discriminator", use_auth_token=huggingface_token)
|
| 33 |
+
|
| 34 |
+
arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02", use_auth_token=huggingface_token)
|
| 35 |
+
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02", use_auth_token=huggingface_token)
|
| 36 |
|
| 37 |
+
aragpt2_mega_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-mega", use_auth_token=huggingface_token)
|
| 38 |
+
aragpt2_mega_model = AutoModel.from_pretrained("aubmindlab/aragpt2-mega", use_auth_token=huggingface_token)
|
| 39 |
|
| 40 |
+
xlm_roberta_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large", use_auth_token=huggingface_token)
|
| 41 |
+
xlm_roberta_model = AutoModel.from_pretrained("xlm-roberta-large", use_auth_token=huggingface_token)
|
| 42 |
|
| 43 |
+
m2m100_tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M", use_auth_token=huggingface_token)
|
| 44 |
+
m2m100_model = AutoModel.from_pretrained("facebook/m2m100_418M", use_auth_token=huggingface_token)
|
| 45 |
|
| 46 |
+
# دالة لتحليل النص باستخدام arabert-ner من transformers
|
| 47 |
def camel_ner_analysis(text):
|
| 48 |
+
tokenizer = AutoTokenizer.from_pretrained("camel-ai/arabert-ner", use_auth_token=huggingface_token)
|
| 49 |
+
model = AutoModel.from_pretrained("camel-ai/arabert-ner", use_auth_token=huggingface_token)
|
| 50 |
tokens = simple_word_tokenize(text)
|
| 51 |
+
inputs = tokenizer(tokens, return_tensors="pt", is_split_into_words=True)
|
| 52 |
+
outputs = model(**inputs)
|
| 53 |
+
entities = outputs.logits.argmax(dim=-1).squeeze().tolist()
|
| 54 |
entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
|
| 55 |
for token, tag in zip(tokens, entities):
|
| 56 |
if tag in entity_dict:
|
|
|
|
| 134 |
# دالة لتحليل النصوص واستخراج المعلومات وحفظ النتائج
|
| 135 |
def analyze_and_complete(file_paths):
|
| 136 |
results = []
|
| 137 |
+
output_directory = "/Volumes/CLOCKWORK T/clockworkspace/first pro/out"
|
| 138 |
|
| 139 |
for file_path in file_paths:
|
| 140 |
if file_path.endswith(".pdf"):
|