Spaces:
Sleeping
Sleeping
File size: 3,652 Bytes
8ab94bb f21cc03 8ab94bb d666f15 1f09605 8ab94bb d666f15 c812dab d666f15 8eb4c63 f21cc03 608f6fc f21cc03 608f6fc d666f15 608f6fc d666f15 608f6fc d666f15 608f6fc d666f15 f21cc03 608f6fc f21cc03 d666f15 3882946 d666f15 f21cc03 cb3fbdc 74e5368 cb3fbdc f21cc03 8ea55d3 f21cc03 8ab94bb f21cc03 74e5368 8ab94bb f21cc03 8ab94bb 3882946 914eb81 d3f5c13 f21cc03 8ab94bb f21cc03 28d01e2 f21cc03 8ab94bb f21cc03 8ea55d3 257f0a7 e1a9402 f21cc03 8be433f 8ab94bb 3882946 8ab94bb cf83b7c fbf28e6 8ab94bb 1f09605 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import gradio as gr
import cv2
import numpy as np
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
import base64
from PIL import Image
from io import BytesIO
import torch
import clip
# Load the segmentation model
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
# Load the CLIP model
model, preprocess = clip.load("ViT-L/14@336px")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device).eval()
def find_similarity(base64_image, text_input):
try:
# Decode the base64 image to bytes
image_bytes = base64.b64decode(base64_image)
# Convert the bytes to a PIL image
image = Image.open(BytesIO(image_bytes))
# Preprocess the image
image = preprocess(image).unsqueeze(0).to(device)
# Prepare input text
text_tokens = clip.tokenize([text_input]).to(device)
# Encode image and text features
with torch.no_grad():
image_features = model.encode_image(image)
text_features = model.encode_text(text_tokens)
# Normalize features and calculate similarity
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (text_features @ image_features.T).squeeze(0).cpu().numpy()
return similarity
except Exception as e:
return str(e)
def segment_image(input_image, text_input):
image_bytes = base64.b64decode(input_image)
image = Image.open(BytesIO(image_bytes))
# Convert the image to RGB color mode
image = image.convert("RGB")
# Convert the image to a numpy array
image = np.array(image)
mask_generator = SamAutomaticMaskGenerator(sam)
masks = mask_generator.generate(image)
segmented_regions = [] # List to store segmented regions with similarity scores
for i, mask_dict in enumerate(masks):
mask_data = (mask_dict['segmentation'] * 255).astype(np.uint8)
# Create a mask with the same shape as the original image
mask = np.zeros_like(image)
mask[:, :] = mask_data[:, :, np.newaxis]
# Apply the mask to the original image
segmented_region = cv2.bitwise_and(image, mask)
x, y, w, h = map(int, mask_dict['bbox'])
cropped_region = segmented_region[y:y+h, x:x+w]
if not cropped_region.size:
# If the cropped region is empty, return the input image as is
return input_image
# Convert to base64 image
_, buffer = cv2.imencode(".png", cv2.cvtColor(cropped_region, cv2.COLOR_BGR2RGB))
segmented_image_base64 = base64.b64encode(buffer).decode()
# Calculate similarity for the segmented image
similarity = find_similarity(segmented_image_base64, text_input)
# Append the segmented image and its similarity score
segmented_regions.append({"image": segmented_image_base64, "similarity": similarity})
# Sort the segmented images by similarity in descending order
segmented_regions.sort(key=lambda x: x["similarity"], reverse=True)
# Limit the output to the top 6 key-value pairs
segmented_regions = segmented_regions[:6]
# Return the segmented images in descending order of similarity
return segmented_regions
# Create Gradio components
input_image = gr.Textbox(label="Base64 Image", lines=8)
text_input = gr.Textbox(label="Text Input") # Use Textbox with a label
# Create a Gradio interface
gr.Interface(fn=segment_image, inputs=[input_image, text_input], outputs="text").launch()
|