Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
|
5 |
+
import base64
|
6 |
+
import requests
|
7 |
+
from gradio_client import Client
|
8 |
+
|
9 |
+
# Load the segmentation model
|
10 |
+
sam_checkpoint = "sam_vit_h_4b8939.pth"
|
11 |
+
model_type = "vit_h"
|
12 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
13 |
+
|
14 |
+
# Define a function for image segmentation
|
15 |
+
def segment_image(input_image):
|
16 |
+
image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
|
17 |
+
mask_generator = SamAutomaticMaskGenerator(sam)
|
18 |
+
masks = mask_generator.generate(image)
|
19 |
+
|
20 |
+
segmented_regions = [] # List to store segmented regions
|
21 |
+
|
22 |
+
for i, mask_dict in enumerate(masks):
|
23 |
+
mask_data = (mask_dict['segmentation'] * 255).astype(np.uint8)
|
24 |
+
segmented_region = cv2.bitwise_and(input_image, input_image, mask=mask_data)
|
25 |
+
|
26 |
+
x, y, w, h = map(int, mask_dict['bbox'])
|
27 |
+
cropped_region = segmented_region[y:y+h, x:x+w]
|
28 |
+
|
29 |
+
# Convert to base64 image
|
30 |
+
_, buffer = cv2.imencode(".png", cv2.cvtColor(cropped_region, cv2.COLOR_BGR2RGB))
|
31 |
+
segmented_image_base64 = base64.b64encode(buffer).decode()
|
32 |
+
segmented_regions.append(segmented_image_base64) # Add to the list
|
33 |
+
|
34 |
+
return segmented_regions
|
35 |
+
|
36 |
+
# Function to call the API and calculate cosine similarity
|
37 |
+
def calculate_cosine_similarity(segmented_images):
|
38 |
+
highest_cosine = -1
|
39 |
+
highest_cosine_base64 = ""
|
40 |
+
|
41 |
+
client = Client("https://ktllc-clip-model-inputbase64.hf.space/--replicas/mmz7z/")
|
42 |
+
|
43 |
+
for base64_image in segmented_images:
|
44 |
+
# Call the API here using the base64 image
|
45 |
+
result = client.predict(base64_image, base64_image, api_name="/predict")
|
46 |
+
|
47 |
+
cosine_value = result['similarity']
|
48 |
+
print(f"Base64 Image: {base64_image}, Cosine Similarity: {cosine_value}")
|
49 |
+
|
50 |
+
if cosine_value > highest_cosine:
|
51 |
+
highest_cosine = cosine_value
|
52 |
+
highest_cosine_base64 = base64_image
|
53 |
+
|
54 |
+
print(f"Highest Cosine Similarity: {highest_cosine} (Base64 Image: {highest_cosine_base64})")
|
55 |
+
|
56 |
+
# Create Gradio components
|
57 |
+
input_image = gr.inputs.Image()
|
58 |
+
output_images = gr.outputs.JSON()
|
59 |
+
|
60 |
+
# Create a Gradio interface
|
61 |
+
segmentation_interface = gr.Interface(fn=segment_image, inputs=input_image, outputs=output_images)
|
62 |
+
|
63 |
+
# Launch the segmentation interface
|
64 |
+
segmentation_interface.launch()
|
65 |
+
|
66 |
+
# Get the segmented images from the segmentation interface
|
67 |
+
segmented_images = segmentation_interface.run()
|
68 |
+
segmentation_interface.close()
|
69 |
+
|
70 |
+
# Call the API for each segmented image and calculate cosine similarity
|
71 |
+
calculate_cosine_similarity(segmented_images)
|