Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -51,8 +51,10 @@ def find_similarity(base64_image, text_input):
|
|
51 |
def segment_image(input_image, text_input):
|
52 |
image_bytes = base64.b64decode(input_image)
|
53 |
image = Image.open(BytesIO(image_bytes))
|
54 |
-
|
55 |
-
image
|
|
|
|
|
56 |
mask_generator = SamAutomaticMaskGenerator(sam)
|
57 |
masks = mask_generator.generate(image)
|
58 |
|
@@ -66,7 +68,7 @@ def segment_image(input_image, text_input):
|
|
66 |
cropped_region = segmented_region[y:y+h, x:x+w]
|
67 |
|
68 |
# Convert to base64 image
|
69 |
-
_, buffer = cv2.imencode(".png",
|
70 |
segmented_image_base64 = base64.b64encode(buffer).decode()
|
71 |
|
72 |
# Calculate similarity for the segmented image
|
@@ -81,6 +83,42 @@ def segment_image(input_image, text_input):
|
|
81 |
# Return the segmented images in descending order of similarity
|
82 |
return segmented_regions
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
# Create Gradio components
|
85 |
input_image = gr.Textbox(label="Base64 Image", lines=8)
|
86 |
text_input = gr.Textbox(label="Text Input") # Use Textbox with a label
|
|
|
51 |
def segment_image(input_image, text_input):
|
52 |
image_bytes = base64.b64decode(input_image)
|
53 |
image = Image.open(BytesIO(image_bytes))
|
54 |
+
|
55 |
+
# Convert the image to a numpy array
|
56 |
+
image = np.array(image)
|
57 |
+
|
58 |
mask_generator = SamAutomaticMaskGenerator(sam)
|
59 |
masks = mask_generator.generate(image)
|
60 |
|
|
|
68 |
cropped_region = segmented_region[y:y+h, x:x+w]
|
69 |
|
70 |
# Convert to base64 image
|
71 |
+
_, buffer = cv2.imencode(".png", cropped_region)
|
72 |
segmented_image_base64 = base64.b64encode(buffer).decode()
|
73 |
|
74 |
# Calculate similarity for the segmented image
|
|
|
83 |
# Return the segmented images in descending order of similarity
|
84 |
return segmented_regions
|
85 |
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
# def segment_image(input_image, text_input):
|
90 |
+
# image_bytes = base64.b64decode(input_image)
|
91 |
+
# image = Image.open(BytesIO(image_bytes))
|
92 |
+
|
93 |
+
# image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
|
94 |
+
# mask_generator = SamAutomaticMaskGenerator(sam)
|
95 |
+
# masks = mask_generator.generate(image)
|
96 |
+
|
97 |
+
# segmented_regions = [] # List to store segmented regions with similarity scores
|
98 |
+
|
99 |
+
# for i, mask_dict in enumerate(masks):
|
100 |
+
# mask_data = (mask_dict['segmentation'] * 255).astype(np.uint8)
|
101 |
+
# segmented_region = cv2.bitwise_and(image, image, mask=mask_data)
|
102 |
+
|
103 |
+
# x, y, w, h = map(int, mask_dict['bbox'])
|
104 |
+
# cropped_region = segmented_region[y:y+h, x:x+w]
|
105 |
+
|
106 |
+
# # Convert to base64 image
|
107 |
+
# _, buffer = cv2.imencode(".png", cv2.cvtColor(cropped_region, cv2.COLOR_BGR2RGB))
|
108 |
+
# segmented_image_base64 = base64.b64encode(buffer).decode()
|
109 |
+
|
110 |
+
# # Calculate similarity for the segmented image
|
111 |
+
# similarity = find_similarity(segmented_image_base64, text_input)
|
112 |
+
|
113 |
+
# # Append the segmented image and its similarity score
|
114 |
+
# segmented_regions.append({"image": segmented_image_base64, "similarity": similarity})
|
115 |
+
|
116 |
+
# # Sort the segmented images by similarity in descending order
|
117 |
+
# segmented_regions.sort(key=lambda x: x["similarity"], reverse=True)
|
118 |
+
|
119 |
+
# # Return the segmented images in descending order of similarity
|
120 |
+
# return segmented_regions
|
121 |
+
|
122 |
# Create Gradio components
|
123 |
input_image = gr.Textbox(label="Base64 Image", lines=8)
|
124 |
text_input = gr.Textbox(label="Text Input") # Use Textbox with a label
|