ktllc commited on
Commit
cb3fbdc
·
1 Parent(s): f21cc03

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -3
app.py CHANGED
@@ -51,8 +51,10 @@ def find_similarity(base64_image, text_input):
51
  def segment_image(input_image, text_input):
52
  image_bytes = base64.b64decode(input_image)
53
  image = Image.open(BytesIO(image_bytes))
54
-
55
- image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
 
 
56
  mask_generator = SamAutomaticMaskGenerator(sam)
57
  masks = mask_generator.generate(image)
58
 
@@ -66,7 +68,7 @@ def segment_image(input_image, text_input):
66
  cropped_region = segmented_region[y:y+h, x:x+w]
67
 
68
  # Convert to base64 image
69
- _, buffer = cv2.imencode(".png", cv2.cvtColor(cropped_region, cv2.COLOR_BGR2RGB))
70
  segmented_image_base64 = base64.b64encode(buffer).decode()
71
 
72
  # Calculate similarity for the segmented image
@@ -81,6 +83,42 @@ def segment_image(input_image, text_input):
81
  # Return the segmented images in descending order of similarity
82
  return segmented_regions
83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
  # Create Gradio components
85
  input_image = gr.Textbox(label="Base64 Image", lines=8)
86
  text_input = gr.Textbox(label="Text Input") # Use Textbox with a label
 
51
  def segment_image(input_image, text_input):
52
  image_bytes = base64.b64decode(input_image)
53
  image = Image.open(BytesIO(image_bytes))
54
+
55
+ # Convert the image to a numpy array
56
+ image = np.array(image)
57
+
58
  mask_generator = SamAutomaticMaskGenerator(sam)
59
  masks = mask_generator.generate(image)
60
 
 
68
  cropped_region = segmented_region[y:y+h, x:x+w]
69
 
70
  # Convert to base64 image
71
+ _, buffer = cv2.imencode(".png", cropped_region)
72
  segmented_image_base64 = base64.b64encode(buffer).decode()
73
 
74
  # Calculate similarity for the segmented image
 
83
  # Return the segmented images in descending order of similarity
84
  return segmented_regions
85
 
86
+
87
+
88
+
89
+ # def segment_image(input_image, text_input):
90
+ # image_bytes = base64.b64decode(input_image)
91
+ # image = Image.open(BytesIO(image_bytes))
92
+
93
+ # image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
94
+ # mask_generator = SamAutomaticMaskGenerator(sam)
95
+ # masks = mask_generator.generate(image)
96
+
97
+ # segmented_regions = [] # List to store segmented regions with similarity scores
98
+
99
+ # for i, mask_dict in enumerate(masks):
100
+ # mask_data = (mask_dict['segmentation'] * 255).astype(np.uint8)
101
+ # segmented_region = cv2.bitwise_and(image, image, mask=mask_data)
102
+
103
+ # x, y, w, h = map(int, mask_dict['bbox'])
104
+ # cropped_region = segmented_region[y:y+h, x:x+w]
105
+
106
+ # # Convert to base64 image
107
+ # _, buffer = cv2.imencode(".png", cv2.cvtColor(cropped_region, cv2.COLOR_BGR2RGB))
108
+ # segmented_image_base64 = base64.b64encode(buffer).decode()
109
+
110
+ # # Calculate similarity for the segmented image
111
+ # similarity = find_similarity(segmented_image_base64, text_input)
112
+
113
+ # # Append the segmented image and its similarity score
114
+ # segmented_regions.append({"image": segmented_image_base64, "similarity": similarity})
115
+
116
+ # # Sort the segmented images by similarity in descending order
117
+ # segmented_regions.sort(key=lambda x: x["similarity"], reverse=True)
118
+
119
+ # # Return the segmented images in descending order of similarity
120
+ # return segmented_regions
121
+
122
  # Create Gradio components
123
  input_image = gr.Textbox(label="Base64 Image", lines=8)
124
  text_input = gr.Textbox(label="Text Input") # Use Textbox with a label