Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ from PIL import Image
|
|
7 |
from io import BytesIO
|
8 |
import torch
|
9 |
import clip
|
10 |
-
|
11 |
|
12 |
# Load the segmentation model
|
13 |
sam_checkpoint = "sam_vit_h_4b8939.pth"
|
@@ -92,34 +92,13 @@ def segment_image(input_image, text_input):
|
|
92 |
# Limit the output to the top 6 key-value pairs
|
93 |
segmented_regions = segmented_regions[:6]
|
94 |
|
95 |
-
# # Run each segmented image through the inference API and store results
|
96 |
-
# results_with_similarity = []
|
97 |
-
# for result in segmented_regions:
|
98 |
-
# image_base64 = result["image"]
|
99 |
-
# similarity = result["similarity"]
|
100 |
-
|
101 |
-
# # Make an API call with image_base64, get the API result
|
102 |
-
# client = Client("https://ktllc-clip-model-inputbase64.hf.space/--replicas/dv889/")
|
103 |
-
# api_result = client.predict(image_base64, text_input, api_name="/predict")
|
104 |
-
|
105 |
-
# # Append the API result and similarity to the list
|
106 |
-
# results_with_similarity.append({"api_result": api_result, "image": image_base64, "similarity": similarity})
|
107 |
-
|
108 |
-
# results_with_similarity.sort(key=lambda x: x["similarity"], reverse=True)
|
109 |
-
|
110 |
-
# results_with_similarity = results_with_similarity[:1]
|
111 |
-
|
112 |
-
# Print the top 6 results
|
113 |
-
# for result in results_with_similarity:
|
114 |
-
# print(result)
|
115 |
-
|
116 |
# Return the segmented images in descending order of similarity
|
117 |
return segmented_regions
|
118 |
|
119 |
# Create Gradio components
|
120 |
input_image = gr.Textbox(label="Base64 Image", lines=8)
|
121 |
text_input = gr.Textbox(label="Text Input") # Use Textbox with a label
|
122 |
-
output_images = gr.outputs.JSON()
|
123 |
|
124 |
# Create a Gradio interface
|
125 |
-
gr.Interface(fn=segment_image, inputs=[input_image, text_input], outputs=
|
|
|
7 |
from io import BytesIO
|
8 |
import torch
|
9 |
import clip
|
10 |
+
|
11 |
|
12 |
# Load the segmentation model
|
13 |
sam_checkpoint = "sam_vit_h_4b8939.pth"
|
|
|
92 |
# Limit the output to the top 6 key-value pairs
|
93 |
segmented_regions = segmented_regions[:6]
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
# Return the segmented images in descending order of similarity
|
96 |
return segmented_regions
|
97 |
|
98 |
# Create Gradio components
|
99 |
input_image = gr.Textbox(label="Base64 Image", lines=8)
|
100 |
text_input = gr.Textbox(label="Text Input") # Use Textbox with a label
|
101 |
+
#output_images = gr.outputs.JSON()
|
102 |
|
103 |
# Create a Gradio interface
|
104 |
+
gr.Interface(fn=segment_image, inputs=[input_image, text_input], outputs="text").launch()
|