ktllc commited on
Commit
74e5368
·
1 Parent(s): 9223407

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -4
app.py CHANGED
@@ -52,8 +52,11 @@ def segment_image(input_image, text_input):
52
  image_bytes = base64.b64decode(input_image)
53
  image = Image.open(BytesIO(image_bytes))
54
 
55
- # Convert the image to a NumPy array
56
- image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB) # Convert to RGB color space
 
 
 
57
 
58
  mask_generator = SamAutomaticMaskGenerator(sam)
59
  masks = mask_generator.generate(image)
@@ -62,13 +65,19 @@ def segment_image(input_image, text_input):
62
 
63
  for i, mask_dict in enumerate(masks):
64
  mask_data = (mask_dict['segmentation'] * 255).astype(np.uint8)
65
- segmented_region = cv2.bitwise_and(image, image, mask=mask_data)
 
 
 
 
 
 
66
 
67
  x, y, w, h = map(int, mask_dict['bbox'])
68
  cropped_region = segmented_region[y:y+h, x:x+w]
69
 
70
  # Convert to base64 image
71
- _, buffer = cv2.imencode(".png", cv2.cvtColor(cropped_region, cv2.COLOR_RGB2BGR)) # Convert back to BGR for encoding
72
  segmented_image_base64 = base64.b64encode(buffer).decode()
73
 
74
  # Calculate similarity for the segmented image
 
52
  image_bytes = base64.b64decode(input_image)
53
  image = Image.open(BytesIO(image_bytes))
54
 
55
+ # Convert the image to RGB color mode
56
+ image = image.convert("RGB")
57
+
58
+ # Convert the image to a numpy array
59
+ image = np.array(image)
60
 
61
  mask_generator = SamAutomaticMaskGenerator(sam)
62
  masks = mask_generator.generate(image)
 
65
 
66
  for i, mask_dict in enumerate(masks):
67
  mask_data = (mask_dict['segmentation'] * 255).astype(np.uint8)
68
+
69
+ # Create a mask with the same shape as the original image
70
+ mask = np.zeros_like(image)
71
+ mask[:, :] = mask_data[:, :, np.newaxis]
72
+
73
+ # Apply the mask to the original image
74
+ segmented_region = cv2.bitwise_and(image, mask)
75
 
76
  x, y, w, h = map(int, mask_dict['bbox'])
77
  cropped_region = segmented_region[y:y+h, x:x+w]
78
 
79
  # Convert to base64 image
80
+ _, buffer = cv2.imencode(".png", cropped_region)
81
  segmented_image_base64 = base64.b64encode(buffer).decode()
82
 
83
  # Calculate similarity for the segmented image