Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import cv2
|
|
3 |
import numpy as np
|
4 |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
|
5 |
import base64
|
6 |
-
from
|
7 |
|
8 |
# Load the segmentation model
|
9 |
sam_checkpoint = "sam_vit_h_4b8939.pth"
|
@@ -16,7 +16,8 @@ def segment_image(input_image):
|
|
16 |
mask_generator = SamAutomaticMaskGenerator(sam)
|
17 |
masks = mask_generator.generate(image)
|
18 |
|
19 |
-
|
|
|
20 |
|
21 |
for i, mask_dict in enumerate(masks):
|
22 |
mask_data = (mask_dict['segmentation'] * 255).astype(np.uint8)
|
@@ -28,43 +29,22 @@ def segment_image(input_image):
|
|
28 |
# Convert to base64 image
|
29 |
_, buffer = cv2.imencode(".png", cv2.cvtColor(cropped_region, cv2.COLOR_BGR2RGB))
|
30 |
segmented_image_base64 = base64.b64encode(buffer).decode()
|
31 |
-
segmented_regions.append(segmented_image_base64) # Add to the list
|
32 |
|
33 |
-
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
client = Client("https://ktllc-clip-model-inputbase64.hf.space/--replicas/mmz7z/")
|
41 |
-
|
42 |
-
for base64_image in segmented_images:
|
43 |
-
# Call the API here using the base64 image
|
44 |
-
result = client.predict(base64_image, base64_image, api_name="/predict")
|
45 |
-
|
46 |
-
cosine_value = result['similarity']
|
47 |
-
print(f"Base64 Image: {base64_image}, Cosine Similarity: {cosine_value}")
|
48 |
-
|
49 |
-
if cosine_value > highest_cosine:
|
50 |
-
highest_cosine = cosine_value
|
51 |
-
highest_cosine_base64 = base64_image
|
52 |
|
53 |
-
|
54 |
|
55 |
# Create Gradio components
|
56 |
input_image = gr.inputs.Image()
|
57 |
-
|
58 |
|
59 |
# Create a Gradio interface
|
60 |
-
|
61 |
-
|
62 |
-
# Launch the segmentation interface
|
63 |
-
segmentation_interface.launch()
|
64 |
-
|
65 |
-
# Get the segmented images from the segmentation interface
|
66 |
-
segmented_images = segmentation_interface.run()
|
67 |
-
segmentation_interface.close()
|
68 |
-
|
69 |
-
# Call the API for each segmented image and calculate cosine similarity
|
70 |
-
calculate_cosine_similarity(segmented_images)
|
|
|
3 |
import numpy as np
|
4 |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
|
5 |
import base64
|
6 |
+
from huggingface_hub import InferenceClient
|
7 |
|
8 |
# Load the segmentation model
|
9 |
sam_checkpoint = "sam_vit_h_4b8939.pth"
|
|
|
16 |
mask_generator = SamAutomaticMaskGenerator(sam)
|
17 |
masks = mask_generator.generate(image)
|
18 |
|
19 |
+
highest_cosine_value = -1
|
20 |
+
highest_cosine_base64 = ""
|
21 |
|
22 |
for i, mask_dict in enumerate(masks):
|
23 |
mask_data = (mask_dict['segmentation'] * 255).astype(np.uint8)
|
|
|
29 |
# Convert to base64 image
|
30 |
_, buffer = cv2.imencode(".png", cv2.cvtColor(cropped_region, cv2.COLOR_BGR2RGB))
|
31 |
segmented_image_base64 = base64.b64encode(buffer).decode()
|
|
|
32 |
|
33 |
+
# Call the API to get the cosine similarity
|
34 |
+
client = InferenceClient()
|
35 |
+
result = client.post(json={"inputs": segmented_image_base64}, model="https://ktllc-clip-model-inputbase64.hf.space/--replicas/mmz7z/")
|
36 |
|
37 |
+
cosine_similarity = result[0].get("score", 0.0)
|
38 |
+
|
39 |
+
if cosine_similarity > highest_cosine_value:
|
40 |
+
highest_cosine_value = cosine_similarity
|
41 |
+
highest_cosine_base64 = segmented_image_base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
return highest_cosine_base64
|
44 |
|
45 |
# Create Gradio components
|
46 |
input_image = gr.inputs.Image()
|
47 |
+
output_image = gr.outputs.Image(type="pil")
|
48 |
|
49 |
# Create a Gradio interface
|
50 |
+
gr.Interface(fn=segment_image, inputs=input_image, outputs=output_image).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|