File size: 7,240 Bytes
e8af220
 
 
 
3cc36a9
6d78687
e8af220
6d78687
e8ab094
 
 
 
 
 
 
 
e8af220
e8ab094
 
e8af220
e8ab094
 
 
6d78687
e8ab094
 
 
 
 
 
 
 
 
6ebde36
e8ab094
 
 
 
 
 
e8af220
6d78687
e8ab094
f9b0ae0
3cc36a9
09d0e26
e8af220
3cc36a9
 
09d0e26
 
e8af220
09d0e26
 
 
 
 
 
 
 
 
 
 
 
e8af220
09d0e26
 
 
 
 
 
 
 
 
 
3cc36a9
09d0e26
3cc36a9
09d0e26
 
3cc36a9
09d0e26
 
 
 
e8ab094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09d0e26
 
 
3cc36a9
 
09d0e26
3cc36a9
e8af220
 
 
 
 
 
 
 
 
 
09d0e26
e8af220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09d0e26
e8af220
6d78687
 
09d0e26
 
6d78687
 
 
 
 
 
 
 
 
 
 
 
09d0e26
6d78687
09d0e26
6d78687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09d0e26
6d78687
 
09d0e26
6d78687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09d0e26
6d78687
 
e8af220
 
 
 
 
 
 
 
 
 
 
6ebde36
 
 
 
e8af220
 
 
883071c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
from groq import Groq
import creds  # Assuming creds.py holds your API key as creds.api_key

# Step 1: Scrape the free courses from Analytics Vidhya
def scrape_courses():
    url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
    try:
        response = requests.get(url)
        response.raise_for_status()  # Raise an error for bad status codes
    except requests.RequestException as e:
        print(f"Error fetching data: {e}")
        return []

    soup = BeautifulSoup(response.content, 'html.parser')
    courses = []

    # Extracting course title, image, and course link
    for course_card in soup.find_all('header', class_='course-card__img-container'):
        img_tag = course_card.find('img', class_='course-card__img')
        
        if img_tag:
            title = img_tag.get('alt')
            image_url = img_tag.get('src')
            
            link_tag = course_card.find_previous('a')
            if link_tag:
                course_link = link_tag.get('href')
                if not course_link.startswith('http'):
                    course_link = 'https://courses.analyticsvidhya.com' + course_link

                courses.append({
                    'title': title,
                    'image_url': image_url,
                    'course_link': course_link
                })
    return courses

# Step 2: Create DataFrame
df = pd.DataFrame(scrape_courses())

# Step 3: Initialize the Groq client and set the API key
client = Groq(api_key=creds.api_key)  # Properly passing the API key

def search_courses(query):
    try:
        print(f"Searching for: {query}")
        print(f"Number of courses in database: {len(df)}")

        # Prepare the prompt for Groq
        prompt = f"""Given the following query: "{query}"
        Please analyze the query and rank the following courses based on their relevance to the query. 
        Prioritize courses from Analytics Vidhya. Provide a relevance score from 0 to 1 for each course.
        Only return courses with a relevance score of 0.5 or higher.
        Return the results in the following format:
        Title: [Course Title]
        Relevance: [Score]
        
        Courses:
        {df['title'].to_string(index=False)}
        """

        print("Sending request to Groq...")
        # Get response from Groq
        response = client.chat.completions.create(
            model="mixtral-8x7b-32768",  # Use the appropriate model
            messages=[{"role": "system", "content": "You are an AI assistant specialized in course recommendations."},
                      {"role": "user", "content": prompt}],
            temperature=0.2,
            max_tokens=1000
        )
        print("Received response from Groq")

        # Parse Groq's response
        results = []
        print("Groq response content:")
        print(response.choices[0].message.content)
        
        for line in response.choices[0].message.content.split('\n'):
            if line.startswith('Title:'):
                title = line.split('Title:')[1].strip()
                print(f"Found title: {title}")
            elif line.startswith('Relevance:'):
                relevance = float(line.split('Relevance:')[1].strip())
                print(f"Relevance for {title}: {relevance}")
                if relevance >= 0.5:
                    matching_courses = df[df['title'] == title]
                    if not matching_courses.empty:
                        course = matching_courses.iloc[0]
                        results.append({
                            'title': title,
                            'image_url': course['image_url'],
                            'course_link': course['course_link'],
                            'score': relevance
                        })
                        print(f"Added course: {title}")
                    else:
                        print(f"Warning: Course not found in database: {title}")

        print(f"Number of results found: {len(results)}")
        return sorted(results, key=lambda x: x['score'], reverse=True)[:10]  # Return top 10 results

    except Exception as e:
        print(f"An error occurred in search_courses: {str(e)}")
        return []

def gradio_search(query):
    result_list = search_courses(query)
    
    if result_list:
        html_output = '<div class="results-container">'
        for item in result_list:
            course_title = item['title']
            course_image = item['image_url']
            course_link = item['course_link']
            relevance_score = round(item['score'] * 100, 2)
            
            html_output += f'''
            <div class="course-card">
                <img src="{course_image}" alt="{course_title}" class="course-image"/>
                <div class="course-info">
                    <h3>{course_title}</h3>
                    <p>Relevance: {relevance_score}%</p>
                    <a href="{course_link}" target="_blank" class="course-link">View Course</a>
                </div>
            </div>'''
        html_output += '</div>'
        return html_output
    else:
        return '<p class="no-results">No results found. Please try a different query.</p>'

# Custom CSS for the Gradio interface
custom_css = """
body {
    font-family: Arial, sans-serif;
    background-color: #000000;  /* Set background to black */
    color: #ffffff;  /* Set text color to white for contrast */
}
.container {
    max-width: 800px;
    margin: 0 auto;
    padding: 20px;
}
.results-container {
    display: flex;
    flex-wrap: wrap;
    justify-content: space-between;
}
.course-card {
    background-color: white;
    border-radius: 8px;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
    margin-bottom: 20px;
    overflow: hidden;
    width: 48%;
    transition: transform 0.2s;
}
.course-card:hover {
    transform: translateY(-5px);
}
.course-image {
    width: 100%;
    height: 150px;
    object-fit: cover;
}
.course-info {
    padding: 15px;
}
.course-info h3 {
    margin-top: 0;
    font-size: 18px;
    color: #333;
}
.course-info p {
    color: #666;
    font-size: 14px;
    margin-bottom: 10px;
}
.course-link {
    display: inline-block;
    background-color: #007bff;
    color: white;
    padding: 8px 12px;
    text-decoration: none;
    border-radius: 4px;
    font-size: 14px;
    transition: background-color 0.2s;
}
.course-link:hover {
    background-color: #0056b3;
}
.no-results {
    text-align: center;
    color: #666;
    font-style: italic;
}
"""

# Gradio interface
iface = gr.Interface(
    fn=gradio_search,
    inputs=gr.Textbox(label="Enter your search query", placeholder="e.g., machine learning, data science, python"),
    outputs=gr.HTML(label="Search Results"),
    title="Analytics Vidhya Smart Course Search",
    description="Find the most relevant courses from Analytics Vidhya based on your query.",
    theme="huggingface",
    css=custom_css,
    examples=[["machine learning for beginners"],
              ["advanced data visualization techniques"],
              ["python programming basics"], 
              ["Business Analytics"]]
)

if __name__ == "__main__":
    iface.launch()