Upload 3 files
Browse files- app.py +213 -0
- creds.py +5 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
import pandas as pd
|
4 |
+
import gradio as gr
|
5 |
+
import os
|
6 |
+
from groq import Groq
|
7 |
+
import creds # Assuming creds.py holds your API key as creds.api_key
|
8 |
+
|
9 |
+
# Step 1: Scrape the free courses from Analytics Vidhya
|
10 |
+
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
|
11 |
+
response = requests.get(url)
|
12 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
13 |
+
|
14 |
+
courses = []
|
15 |
+
|
16 |
+
# Extracting course title, image, and course link
|
17 |
+
for course_card in soup.find_all('header', class_='course-card__img-container'):
|
18 |
+
img_tag = course_card.find('img', class_='course-card__img')
|
19 |
+
|
20 |
+
if img_tag:
|
21 |
+
title = img_tag.get('alt')
|
22 |
+
image_url = img_tag.get('src')
|
23 |
+
|
24 |
+
link_tag = course_card.find_previous('a')
|
25 |
+
if link_tag:
|
26 |
+
course_link = link_tag.get('href')
|
27 |
+
if not course_link.startswith('http'):
|
28 |
+
course_link = 'https://courses.analyticsvidhya.com' + course_link
|
29 |
+
|
30 |
+
courses.append({
|
31 |
+
'title': title,
|
32 |
+
'image_url': image_url,
|
33 |
+
'course_link': course_link
|
34 |
+
})
|
35 |
+
|
36 |
+
# Step 2: Create DataFrame
|
37 |
+
df = pd.DataFrame(courses)
|
38 |
+
|
39 |
+
# Step 3: Initialize the Groq client and set the API key
|
40 |
+
client = Groq(api_key=creds.api_key) # Properly passing the API key
|
41 |
+
|
42 |
+
def search_courses(query):
|
43 |
+
try:
|
44 |
+
print(f"Searching for: {query}")
|
45 |
+
print(f"Number of courses in database: {len(df)}")
|
46 |
+
|
47 |
+
# Prepare the prompt for Groq
|
48 |
+
prompt = f"""Given the following query: "{query}"
|
49 |
+
Please analyze the query and rank the following courses based on their relevance to the query.
|
50 |
+
Prioritize courses from Analytics Vidhya. Provide a relevance score from 0 to 1 for each course.
|
51 |
+
Only return courses with a relevance score of 0.5 or higher.
|
52 |
+
Return the results in the following format:
|
53 |
+
Title: [Course Title]
|
54 |
+
Relevance: [Score]
|
55 |
+
|
56 |
+
Courses:
|
57 |
+
{df['title'].to_string(index=False)}
|
58 |
+
"""
|
59 |
+
|
60 |
+
print("Sending request to Groq...")
|
61 |
+
# Get response from Groq
|
62 |
+
response = client.chat.completions.create(
|
63 |
+
model="mixtral-8x7b-32768", # Use the appropriate model
|
64 |
+
messages=[{"role": "system", "content": "You are an AI assistant specialized in course recommendations."},
|
65 |
+
{"role": "user", "content": prompt}],
|
66 |
+
temperature=0.2,
|
67 |
+
max_tokens=1000
|
68 |
+
)
|
69 |
+
print("Received response from Groq")
|
70 |
+
|
71 |
+
# Parse Groq's response
|
72 |
+
results = []
|
73 |
+
print("Groq response content:")
|
74 |
+
print(response.choices[0].message.content)
|
75 |
+
|
76 |
+
for line in response.choices[0].message.content.split('\n'):
|
77 |
+
if line.startswith('Title:'):
|
78 |
+
title = line.split('Title:')[1].strip()
|
79 |
+
print(f"Found title: {title}")
|
80 |
+
elif line.startswith('Relevance:'):
|
81 |
+
relevance = float(line.split('Relevance:')[1].strip())
|
82 |
+
print(f"Relevance for {title}: {relevance}")
|
83 |
+
if relevance >= 0.5:
|
84 |
+
matching_courses = df[df['title'] == title]
|
85 |
+
if not matching_courses.empty:
|
86 |
+
course = matching_courses.iloc[0]
|
87 |
+
results.append({
|
88 |
+
'title': title,
|
89 |
+
'image_url': course['image_url'],
|
90 |
+
'course_link': course['course_link'],
|
91 |
+
'score': relevance
|
92 |
+
})
|
93 |
+
print(f"Added course: {title}")
|
94 |
+
else:
|
95 |
+
print(f"Warning: Course not found in database: {title}")
|
96 |
+
|
97 |
+
print(f"Number of results found: {len(results)}")
|
98 |
+
return sorted(results, key=lambda x: x['score'], reverse=True)[:10] # Return top 10 results
|
99 |
+
|
100 |
+
except Exception as e:
|
101 |
+
print(f"An error occurred in search_courses: {str(e)}")
|
102 |
+
return []
|
103 |
+
|
104 |
+
def gradio_search(query):
|
105 |
+
result_list = search_courses(query)
|
106 |
+
|
107 |
+
if result_list:
|
108 |
+
html_output = '<div class="results-container">'
|
109 |
+
for item in result_list:
|
110 |
+
course_title = item['title']
|
111 |
+
course_image = item['image_url']
|
112 |
+
course_link = item['course_link']
|
113 |
+
relevance_score = round(item['score'] * 100, 2)
|
114 |
+
|
115 |
+
html_output += f'''
|
116 |
+
<div class="course-card">
|
117 |
+
<img src="{course_image}" alt="{course_title}" class="course-image"/>
|
118 |
+
<div class="course-info">
|
119 |
+
<h3>{course_title}</h3>
|
120 |
+
<p>Relevance: {relevance_score}%</p>
|
121 |
+
<a href="{course_link}" target="_blank" class="course-link">View Course</a>
|
122 |
+
</div>
|
123 |
+
</div>'''
|
124 |
+
html_output += '</div>'
|
125 |
+
return html_output
|
126 |
+
else:
|
127 |
+
return '<p class="no-results">No results found. Please try a different query.</p>'
|
128 |
+
|
129 |
+
# Custom CSS for the Gradio interface
|
130 |
+
custom_css = """
|
131 |
+
body {
|
132 |
+
font-family: Arial, sans-serif;
|
133 |
+
background-color: #f0f2f5;
|
134 |
+
}
|
135 |
+
.container {
|
136 |
+
max-width: 800px;
|
137 |
+
margin: 0 auto;
|
138 |
+
padding: 20px;
|
139 |
+
}
|
140 |
+
.results-container {
|
141 |
+
display: flex;
|
142 |
+
flex-wrap: wrap;
|
143 |
+
justify-content: space-between;
|
144 |
+
}
|
145 |
+
.course-card {
|
146 |
+
background-color: white;
|
147 |
+
border-radius: 8px;
|
148 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
149 |
+
margin-bottom: 20px;
|
150 |
+
overflow: hidden;
|
151 |
+
width: 48%;
|
152 |
+
transition: transform 0.2s;
|
153 |
+
}
|
154 |
+
.course-card:hover {
|
155 |
+
transform: translateY(-5px);
|
156 |
+
}
|
157 |
+
.course-image {
|
158 |
+
width: 100%;
|
159 |
+
height: 150px;
|
160 |
+
object-fit: cover;
|
161 |
+
}
|
162 |
+
.course-info {
|
163 |
+
padding: 15px;
|
164 |
+
}
|
165 |
+
.course-info h3 {
|
166 |
+
margin-top: 0;
|
167 |
+
font-size: 18px;
|
168 |
+
color: #333;
|
169 |
+
}
|
170 |
+
.course-info p {
|
171 |
+
color: #666;
|
172 |
+
font-size: 14px;
|
173 |
+
margin-bottom: 10px;
|
174 |
+
}
|
175 |
+
.course-link {
|
176 |
+
display: inline-block;
|
177 |
+
background-color: #007bff;
|
178 |
+
color: white;
|
179 |
+
padding: 8px 12px;
|
180 |
+
text-decoration: none;
|
181 |
+
border-radius: 4px;
|
182 |
+
font-size: 14px;
|
183 |
+
transition: background-color 0.2s;
|
184 |
+
}
|
185 |
+
.course-link:hover {
|
186 |
+
background-color: #0056b3;
|
187 |
+
}
|
188 |
+
.no-results {
|
189 |
+
text-align: center;
|
190 |
+
color: #666;
|
191 |
+
font-style: italic;
|
192 |
+
}
|
193 |
+
"""
|
194 |
+
|
195 |
+
# Gradio interface
|
196 |
+
iface = gr.Interface(
|
197 |
+
fn=gradio_search,
|
198 |
+
inputs=gr.Textbox(label="Enter your search query", placeholder="e.g., machine learning, data science, python"),
|
199 |
+
outputs=gr.HTML(label="Search Results"),
|
200 |
+
title="Analytics Vidhya Smart Course Search",
|
201 |
+
description="Find the most relevant courses from Analytics Vidhya based on your query.",
|
202 |
+
theme="huggingface",
|
203 |
+
css=custom_css,
|
204 |
+
examples=[
|
205 |
+
["machine learning for beginners"],
|
206 |
+
["advanced data visualization techniques"],
|
207 |
+
["python programming basics"],
|
208 |
+
["Business Analytics"]
|
209 |
+
],
|
210 |
+
)
|
211 |
+
|
212 |
+
if __name__ == "__main__":
|
213 |
+
iface.launch()
|
creds.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# creds.py
|
2 |
+
|
3 |
+
# Store your Groq API key here
|
4 |
+
api_key = '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'
|
5 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
requests
|
2 |
+
beautifulsoup4
|
3 |
+
pandas
|
4 |
+
gradio
|
5 |
+
groq
|