Update app.py
Browse files
app.py
CHANGED
@@ -4,82 +4,67 @@ import pandas as pd
|
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
from groq import Groq
|
7 |
-
import creds #
|
8 |
|
9 |
-
# Step 1: Scrape
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
# Extracting course title, image, and course link
|
17 |
-
for course_card in soup.find_all('header', class_='course-card__img-container'):
|
18 |
-
img_tag = course_card.find('img', class_='course-card__img')
|
19 |
-
|
20 |
-
if img_tag:
|
21 |
-
title = img_tag.get('alt')
|
22 |
-
image_url = img_tag.get('src')
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
df = pd.DataFrame(courses)
|
38 |
|
39 |
-
#
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
def search_courses(query):
|
43 |
try:
|
44 |
print(f"Searching for: {query}")
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
prompt = f"""Given the following query: "{query}"
|
49 |
-
Please analyze the query and rank the following courses based on their relevance to the query.
|
50 |
-
Prioritize courses from Analytics Vidhya. Provide a relevance score from 0 to 1 for each course.
|
51 |
-
Only return courses with a relevance score of 0.5 or higher.
|
52 |
-
Return the results in the following format:
|
53 |
-
Title: [Course Title]
|
54 |
-
Relevance: [Score]
|
55 |
|
56 |
Courses:
|
57 |
{df['title'].to_string(index=False)}
|
58 |
"""
|
59 |
|
60 |
-
print("Sending request to Groq...")
|
61 |
-
# Get response from Groq
|
62 |
response = client.chat.completions.create(
|
63 |
-
model="mixtral-8x7b-32768",
|
64 |
messages=[{"role": "system", "content": "You are an AI assistant specialized in course recommendations."},
|
65 |
{"role": "user", "content": prompt}],
|
66 |
temperature=0.2,
|
67 |
max_tokens=1000
|
68 |
)
|
69 |
-
print("Received response from Groq")
|
70 |
|
71 |
-
# Parse Groq's response
|
72 |
results = []
|
73 |
-
print("Groq response content:")
|
74 |
-
print(response.choices[0].message.content)
|
75 |
-
|
76 |
for line in response.choices[0].message.content.split('\n'):
|
77 |
if line.startswith('Title:'):
|
78 |
title = line.split('Title:')[1].strip()
|
79 |
-
print(f"Found title: {title}")
|
80 |
elif line.startswith('Relevance:'):
|
81 |
relevance = float(line.split('Relevance:')[1].strip())
|
82 |
-
print(f"Relevance for {title}: {relevance}")
|
83 |
if relevance >= 0.5:
|
84 |
matching_courses = df[df['title'] == title]
|
85 |
if not matching_courses.empty:
|
@@ -90,11 +75,7 @@ def search_courses(query):
|
|
90 |
'course_link': course['course_link'],
|
91 |
'score': relevance
|
92 |
})
|
93 |
-
print(f"Added course: {title}")
|
94 |
-
else:
|
95 |
-
print(f"Warning: Course not found in database: {title}")
|
96 |
|
97 |
-
print(f"Number of results found: {len(results)}")
|
98 |
return sorted(results, key=lambda x: x['score'], reverse=True)[:10] # Return top 10 results
|
99 |
|
100 |
except Exception as e:
|
@@ -128,71 +109,19 @@ def gradio_search(query):
|
|
128 |
|
129 |
# Custom CSS for the Gradio interface
|
130 |
custom_css = """
|
131 |
-
body {
|
132 |
-
|
133 |
-
|
134 |
-
}
|
135 |
-
|
136 |
-
|
137 |
-
}
|
138 |
-
.
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
}
|
143 |
-
.results-
|
144 |
-
display: flex;
|
145 |
-
flex-wrap: wrap;
|
146 |
-
justify-content: space-between;
|
147 |
-
}
|
148 |
-
.course-card {
|
149 |
-
background-color: white;
|
150 |
-
border-radius: 8px;
|
151 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
152 |
-
margin-bottom: 20px;
|
153 |
-
overflow: hidden;
|
154 |
-
width: 48%;
|
155 |
-
transition: transform 0.2s;
|
156 |
-
}
|
157 |
-
.course-card:hover {
|
158 |
-
transform: translateY(-5px);
|
159 |
-
}
|
160 |
-
.course-image {
|
161 |
-
width: 100%;
|
162 |
-
height: 150px;
|
163 |
-
object-fit: cover;
|
164 |
-
}
|
165 |
-
.course-info {
|
166 |
-
padding: 15px;
|
167 |
-
}
|
168 |
-
.course-info h3 {
|
169 |
-
margin-top: 0;
|
170 |
-
font-size: 18px;
|
171 |
-
color: #333;
|
172 |
-
}
|
173 |
-
.course-info p {
|
174 |
-
color: #666;
|
175 |
-
font-size: 14px;
|
176 |
-
margin-bottom: 10px;
|
177 |
-
}
|
178 |
-
.course-link {
|
179 |
-
display: inline-block;
|
180 |
-
background-color: #007bff;
|
181 |
-
color: white;
|
182 |
-
padding: 8px 12px;
|
183 |
-
text-decoration: none;
|
184 |
-
border-radius: 4px;
|
185 |
-
font-size: 14px;
|
186 |
-
transition: background-color 0.2s;
|
187 |
-
}
|
188 |
-
.course-link:hover {
|
189 |
-
background-color: #0056b3;
|
190 |
-
}
|
191 |
-
.no-results {
|
192 |
-
text-align: center;
|
193 |
-
color: #666;
|
194 |
-
font-style: italic;
|
195 |
-
}
|
196 |
"""
|
197 |
|
198 |
# Gradio interface
|
|
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
from groq import Groq
|
7 |
+
import creds # Ensure creds.py contains `api_key` as `creds.api_key`
|
8 |
|
9 |
+
# Step 1: Scrape free courses from Analytics Vidhya
|
10 |
+
def scrape_courses():
|
11 |
+
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
|
12 |
+
response = requests.get(url)
|
13 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
14 |
+
courses = []
|
15 |
|
16 |
+
for course_card in soup.find_all('header', class_='course-card__img-container'):
|
17 |
+
img_tag = course_card.find('img', class_='course-card__img')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
if img_tag:
|
20 |
+
title = img_tag.get('alt')
|
21 |
+
image_url = img_tag.get('src')
|
22 |
+
|
23 |
+
link_tag = course_card.find_previous('a')
|
24 |
+
if link_tag:
|
25 |
+
course_link = link_tag.get('href')
|
26 |
+
if not course_link.startswith('http'):
|
27 |
+
course_link = 'https://courses.analyticsvidhya.com' + course_link
|
28 |
|
29 |
+
courses.append({
|
30 |
+
'title': title,
|
31 |
+
'image_url': image_url,
|
32 |
+
'course_link': course_link
|
33 |
+
})
|
34 |
|
35 |
+
return pd.DataFrame(courses)
|
|
|
36 |
|
37 |
+
# Initialize course DataFrame
|
38 |
+
df = scrape_courses()
|
39 |
+
|
40 |
+
# Step 2: Initialize the Groq client and set the API key
|
41 |
+
client = Groq(api_key=creds.api_key)
|
42 |
|
43 |
def search_courses(query):
|
44 |
try:
|
45 |
print(f"Searching for: {query}")
|
46 |
+
prompt = f"""Given the query: "{query}"
|
47 |
+
Rank the following courses based on relevance to the query, prioritizing Analytics Vidhya courses.
|
48 |
+
Provide a relevance score (0-1) for each course, returning only those with a score >= 0.5.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
Courses:
|
51 |
{df['title'].to_string(index=False)}
|
52 |
"""
|
53 |
|
|
|
|
|
54 |
response = client.chat.completions.create(
|
55 |
+
model="mixtral-8x7b-32768",
|
56 |
messages=[{"role": "system", "content": "You are an AI assistant specialized in course recommendations."},
|
57 |
{"role": "user", "content": prompt}],
|
58 |
temperature=0.2,
|
59 |
max_tokens=1000
|
60 |
)
|
|
|
61 |
|
|
|
62 |
results = []
|
|
|
|
|
|
|
63 |
for line in response.choices[0].message.content.split('\n'):
|
64 |
if line.startswith('Title:'):
|
65 |
title = line.split('Title:')[1].strip()
|
|
|
66 |
elif line.startswith('Relevance:'):
|
67 |
relevance = float(line.split('Relevance:')[1].strip())
|
|
|
68 |
if relevance >= 0.5:
|
69 |
matching_courses = df[df['title'] == title]
|
70 |
if not matching_courses.empty:
|
|
|
75 |
'course_link': course['course_link'],
|
76 |
'score': relevance
|
77 |
})
|
|
|
|
|
|
|
78 |
|
|
|
79 |
return sorted(results, key=lambda x: x['score'], reverse=True)[:10] # Return top 10 results
|
80 |
|
81 |
except Exception as e:
|
|
|
109 |
|
110 |
# Custom CSS for the Gradio interface
|
111 |
custom_css = """
|
112 |
+
body { font-family: Arial, sans-serif; background-color: #f0f2f5; }
|
113 |
+
h1, h2, p, .container .examples { color: #333; }
|
114 |
+
.container { max-width: 800px; margin: 0 auto; padding: 20px; }
|
115 |
+
.results-container { display: flex; flex-wrap: wrap; justify-content: space-between; }
|
116 |
+
.course-card { background-color: white; border-radius: 8px; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); margin-bottom: 20px; overflow: hidden; width: 48%; transition: transform 0.2s; }
|
117 |
+
.course-card:hover { transform: translateY(-5px); }
|
118 |
+
.course-image { width: 100%; height: 150px; object-fit: cover; }
|
119 |
+
.course-info { padding: 15px; }
|
120 |
+
.course-info h3 { margin-top: 0; font-size: 18px; color: #333; }
|
121 |
+
.course-info p { color: #666; font-size: 14px; margin-bottom: 10px; }
|
122 |
+
.course-link { display: inline-block; background-color: #007bff; color: white; padding: 8px 12px; text-decoration: none; border-radius: 4px; font-size: 14px; transition: background-color 0.2s; }
|
123 |
+
.course-link:hover { background-color: #0056b3; }
|
124 |
+
.no-results { text-align: center; color: #666; font-style: italic; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
"""
|
126 |
|
127 |
# Gradio interface
|