Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,8 @@ import pandas as pd
|
|
4 |
import gradio as gr
|
5 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
|
7 |
import creds # Assuming creds.py holds your API key as creds.api_key
|
8 |
|
9 |
# Step 1: Scrape the free courses from Analytics Vidhya
|
@@ -36,40 +38,42 @@ for course_card in soup.find_all('header', class_='course-card__img-container'):
|
|
36 |
# Step 2: Create DataFrame
|
37 |
df = pd.DataFrame(courses)
|
38 |
|
39 |
-
# Step 3:
|
40 |
-
|
41 |
-
text = text.lower()
|
42 |
-
text = text.replace("-", " ")
|
43 |
-
return text
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
tfidf_matrix =
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
73 |
|
74 |
def gradio_search(query):
|
75 |
result_list = search_courses(query)
|
@@ -80,7 +84,7 @@ def gradio_search(query):
|
|
80 |
course_title = item['title']
|
81 |
course_image = item['image_url']
|
82 |
course_link = item['course_link']
|
83 |
-
relevance_score =
|
84 |
|
85 |
html_output += f'''
|
86 |
<div class="course-card">
|
@@ -100,8 +104,8 @@ def gradio_search(query):
|
|
100 |
custom_css = """
|
101 |
body {
|
102 |
font-family: Arial, sans-serif;
|
103 |
-
background-color: #121212;
|
104 |
-
color: #E0E0E0;
|
105 |
}
|
106 |
.container {
|
107 |
max-width: 800px;
|
@@ -115,7 +119,7 @@ body {
|
|
115 |
justify-content: space-between;
|
116 |
}
|
117 |
.course-card {
|
118 |
-
background-color: #1E1E1E;
|
119 |
border-radius: 8px;
|
120 |
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.5);
|
121 |
margin-bottom: 20px;
|
@@ -137,10 +141,10 @@ body {
|
|
137 |
.course-info h3 {
|
138 |
margin-top: 0;
|
139 |
font-size: 18px;
|
140 |
-
color: #E0E0E0;
|
141 |
}
|
142 |
.course-info p {
|
143 |
-
color: #B0B0B0;
|
144 |
font-size: 14px;
|
145 |
margin-bottom: 10px;
|
146 |
}
|
@@ -173,11 +177,10 @@ iface = gr.Interface(
|
|
173 |
description="Find the most relevant courses from Analytics Vidhya based on your query.",
|
174 |
theme="huggingface",
|
175 |
css=custom_css,
|
176 |
-
examples=[
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
["Business Analytics"]
|
181 |
],
|
182 |
)
|
183 |
|
|
|
4 |
import gradio as gr
|
5 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
import os
|
8 |
+
from groq import Groq
|
9 |
import creds # Assuming creds.py holds your API key as creds.api_key
|
10 |
|
11 |
# Step 1: Scrape the free courses from Analytics Vidhya
|
|
|
38 |
# Step 2: Create DataFrame
|
39 |
df = pd.DataFrame(courses)
|
40 |
|
41 |
+
# Step 3: Initialize the Groq client and set the API key
|
42 |
+
client = Groq(api_key=creds.api_key)
|
|
|
|
|
|
|
43 |
|
44 |
+
def search_courses(query):
|
45 |
+
try:
|
46 |
+
# Step 4: Preprocessing query and course titles for TF-IDF
|
47 |
+
course_titles = df['title'].tolist()
|
48 |
+
course_titles.append(query) # Add the query to the list of titles
|
49 |
|
50 |
+
# Using TF-IDF to vectorize the course titles and query
|
51 |
+
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
|
52 |
+
tfidf_matrix = tfidf_vectorizer.fit_transform(course_titles)
|
53 |
|
54 |
+
# Compute cosine similarity between the query and course titles
|
55 |
+
cosine_similarities = cosine_similarity(tfidf_matrix[-1:], tfidf_matrix[:-1]).flatten()
|
56 |
+
|
57 |
+
# Get the top 10 relevant courses based on cosine similarity
|
58 |
+
top_indices = cosine_similarities.argsort()[-10:][::-1]
|
59 |
+
|
60 |
+
# Step 5: Build results
|
61 |
+
results = []
|
62 |
+
for index in top_indices:
|
63 |
+
relevance = cosine_similarities[index]
|
64 |
+
if relevance >= 0.5: # Only consider courses with at least 50% relevance
|
65 |
+
course = df.iloc[index]
|
66 |
+
results.append({
|
67 |
+
'title': course['title'],
|
68 |
+
'image_url': course['image_url'],
|
69 |
+
'course_link': course['course_link'],
|
70 |
+
'score': round(relevance * 100, 2) # Show relevance as percentage
|
71 |
+
})
|
72 |
+
|
73 |
+
return results if results else []
|
74 |
+
|
75 |
+
except Exception as e:
|
76 |
+
return []
|
77 |
|
78 |
def gradio_search(query):
|
79 |
result_list = search_courses(query)
|
|
|
84 |
course_title = item['title']
|
85 |
course_image = item['image_url']
|
86 |
course_link = item['course_link']
|
87 |
+
relevance_score = item['score']
|
88 |
|
89 |
html_output += f'''
|
90 |
<div class="course-card">
|
|
|
104 |
custom_css = """
|
105 |
body {
|
106 |
font-family: Arial, sans-serif;
|
107 |
+
background-color: #121212; /* Dark background */
|
108 |
+
color: #E0E0E0; /* Light text color for dark background */
|
109 |
}
|
110 |
.container {
|
111 |
max-width: 800px;
|
|
|
119 |
justify-content: space-between;
|
120 |
}
|
121 |
.course-card {
|
122 |
+
background-color: #1E1E1E; /* Darker card background */
|
123 |
border-radius: 8px;
|
124 |
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.5);
|
125 |
margin-bottom: 20px;
|
|
|
141 |
.course-info h3 {
|
142 |
margin-top: 0;
|
143 |
font-size: 18px;
|
144 |
+
color: #E0E0E0; /* Light text color */
|
145 |
}
|
146 |
.course-info p {
|
147 |
+
color: #B0B0B0; /* Slightly darker text color for contrast */
|
148 |
font-size: 14px;
|
149 |
margin-bottom: 10px;
|
150 |
}
|
|
|
177 |
description="Find the most relevant courses from Analytics Vidhya based on your query.",
|
178 |
theme="huggingface",
|
179 |
css=custom_css,
|
180 |
+
examples=[["machine learning for beginners"],
|
181 |
+
["advanced data visualization techniques"],
|
182 |
+
["python programming basics"],
|
183 |
+
["Business Analytics"]
|
|
|
184 |
],
|
185 |
)
|
186 |
|