Update app.py
Browse files
app.py
CHANGED
@@ -2,39 +2,45 @@ import requests
|
|
2 |
from bs4 import BeautifulSoup
|
3 |
import pandas as pd
|
4 |
import gradio as gr
|
5 |
-
import os
|
6 |
from groq import Groq
|
7 |
import creds # Assuming creds.py holds your API key as creds.api_key
|
8 |
|
9 |
# Step 1: Scrape the free courses from Analytics Vidhya
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
# Extracting course title, image, and course link
|
17 |
-
for course_card in soup.find_all('header', class_='course-card__img-container'):
|
18 |
-
|
19 |
-
|
20 |
-
if img_tag:
|
21 |
-
title = img_tag.get('alt')
|
22 |
-
image_url = img_tag.get('src')
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
'
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Step 2: Create DataFrame
|
37 |
-
df = pd.DataFrame(
|
38 |
|
39 |
# Step 3: Initialize the Groq client and set the API key
|
40 |
client = Groq(api_key=creds.api_key) # Properly passing the API key
|
@@ -44,9 +50,6 @@ def search_courses(query):
|
|
44 |
print(f"Searching for: {query}")
|
45 |
print(f"Number of courses in database: {len(df)}")
|
46 |
|
47 |
-
# Normalize the query to lowercase for case-insensitive comparison
|
48 |
-
normalized_query = query.lower()
|
49 |
-
|
50 |
# Prepare the prompt for Groq
|
51 |
prompt = f"""Given the following query: "{query}"
|
52 |
Please analyze the query and rank the following courses based on their relevance to the query.
|
@@ -80,27 +83,22 @@ def search_courses(query):
|
|
80 |
if line.startswith('Title:'):
|
81 |
title = line.split('Title:')[1].strip()
|
82 |
print(f"Found title: {title}")
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
'score': relevance
|
100 |
-
})
|
101 |
-
print(f"Added course: {title}")
|
102 |
-
else:
|
103 |
-
print(f"Warning: Course not found in database: {title}")
|
104 |
|
105 |
print(f"Number of results found: {len(results)}")
|
106 |
return sorted(results, key=lambda x: x['score'], reverse=True)[:10] # Return top 10 results
|
|
|
2 |
from bs4 import BeautifulSoup
|
3 |
import pandas as pd
|
4 |
import gradio as gr
|
|
|
5 |
from groq import Groq
|
6 |
import creds # Assuming creds.py holds your API key as creds.api_key
|
7 |
|
8 |
# Step 1: Scrape the free courses from Analytics Vidhya
|
9 |
+
def scrape_courses():
|
10 |
+
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
|
11 |
+
try:
|
12 |
+
response = requests.get(url)
|
13 |
+
response.raise_for_status() # Raise an error for bad status codes
|
14 |
+
except requests.RequestException as e:
|
15 |
+
print(f"Error fetching data: {e}")
|
16 |
+
return []
|
17 |
|
18 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
19 |
+
courses = []
|
20 |
|
21 |
+
# Extracting course title, image, and course link
|
22 |
+
for course_card in soup.find_all('header', class_='course-card__img-container'):
|
23 |
+
img_tag = course_card.find('img', class_='course-card__img')
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
if img_tag:
|
26 |
+
title = img_tag.get('alt')
|
27 |
+
image_url = img_tag.get('src')
|
28 |
+
|
29 |
+
link_tag = course_card.find_previous('a')
|
30 |
+
if link_tag:
|
31 |
+
course_link = link_tag.get('href')
|
32 |
+
if not course_link.startswith('http'):
|
33 |
+
course_link = 'https://courses.analyticsvidhya.com' + course_link
|
34 |
+
|
35 |
+
courses.append({
|
36 |
+
'title': title,
|
37 |
+
'image_url': image_url,
|
38 |
+
'course_link': course_link
|
39 |
+
})
|
40 |
+
return courses
|
41 |
|
42 |
# Step 2: Create DataFrame
|
43 |
+
df = pd.DataFrame(scrape_courses())
|
44 |
|
45 |
# Step 3: Initialize the Groq client and set the API key
|
46 |
client = Groq(api_key=creds.api_key) # Properly passing the API key
|
|
|
50 |
print(f"Searching for: {query}")
|
51 |
print(f"Number of courses in database: {len(df)}")
|
52 |
|
|
|
|
|
|
|
53 |
# Prepare the prompt for Groq
|
54 |
prompt = f"""Given the following query: "{query}"
|
55 |
Please analyze the query and rank the following courses based on their relevance to the query.
|
|
|
83 |
if line.startswith('Title:'):
|
84 |
title = line.split('Title:')[1].strip()
|
85 |
print(f"Found title: {title}")
|
86 |
+
elif line.startswith('Relevance:'):
|
87 |
+
relevance = float(line.split('Relevance:')[1].strip())
|
88 |
+
print(f"Relevance for {title}: {relevance}")
|
89 |
+
if relevance >= 0.5:
|
90 |
+
matching_courses = df[df['title'] == title]
|
91 |
+
if not matching_courses.empty:
|
92 |
+
course = matching_courses.iloc[0]
|
93 |
+
results.append({
|
94 |
+
'title': title,
|
95 |
+
'image_url': course['image_url'],
|
96 |
+
'course_link': course['course_link'],
|
97 |
+
'score': relevance
|
98 |
+
})
|
99 |
+
print(f"Added course: {title}")
|
100 |
+
else:
|
101 |
+
print(f"Warning: Course not found in database: {title}")
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
print(f"Number of results found: {len(results)}")
|
104 |
return sorted(results, key=lambda x: x['score'], reverse=True)[:10] # Return top 10 results
|