Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,6 @@ import requests
|
|
2 |
from bs4 import BeautifulSoup
|
3 |
import pandas as pd
|
4 |
import gradio as gr
|
5 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
import os
|
8 |
from groq import Groq
|
9 |
import creds # Assuming creds.py holds your API key as creds.api_key
|
@@ -39,40 +37,68 @@ for course_card in soup.find_all('header', class_='course-card__img-container'):
|
|
39 |
df = pd.DataFrame(courses)
|
40 |
|
41 |
# Step 3: Initialize the Groq client and set the API key
|
42 |
-
client = Groq(api_key=creds.api_key)
|
43 |
|
44 |
def search_courses(query):
|
45 |
try:
|
46 |
-
|
47 |
-
|
48 |
-
course_titles.append(query) # Add the query to the list of titles
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
#
|
58 |
-
top_indices = cosine_similarities.argsort()[-10:][::-1]
|
59 |
-
|
60 |
-
# Step 5: Build results
|
61 |
results = []
|
62 |
-
|
63 |
-
|
64 |
-
if relevance >= 0.5: # Only consider courses with at least 50% relevance
|
65 |
-
course = df.iloc[index]
|
66 |
-
results.append({
|
67 |
-
'title': course['title'],
|
68 |
-
'image_url': course['image_url'],
|
69 |
-
'course_link': course['course_link'],
|
70 |
-
'score': round(relevance * 100, 2) # Show relevance as percentage
|
71 |
-
})
|
72 |
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
except Exception as e:
|
|
|
76 |
return []
|
77 |
|
78 |
def gradio_search(query):
|
@@ -84,7 +110,7 @@ def gradio_search(query):
|
|
84 |
course_title = item['title']
|
85 |
course_image = item['image_url']
|
86 |
course_link = item['course_link']
|
87 |
-
relevance_score = item['score']
|
88 |
|
89 |
html_output += f'''
|
90 |
<div class="course-card">
|
@@ -100,18 +126,17 @@ def gradio_search(query):
|
|
100 |
else:
|
101 |
return '<p class="no-results">No results found. Please try a different query.</p>'
|
102 |
|
103 |
-
#
|
104 |
custom_css = """
|
105 |
body {
|
106 |
font-family: Arial, sans-serif;
|
107 |
-
background-color: #
|
108 |
-
color: #
|
109 |
}
|
110 |
.container {
|
111 |
max-width: 800px;
|
112 |
margin: 0 auto;
|
113 |
padding: 20px;
|
114 |
-
color: #E0E0E0;
|
115 |
}
|
116 |
.results-container {
|
117 |
display: flex;
|
@@ -119,9 +144,9 @@ body {
|
|
119 |
justify-content: space-between;
|
120 |
}
|
121 |
.course-card {
|
122 |
-
background-color:
|
123 |
border-radius: 8px;
|
124 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.
|
125 |
margin-bottom: 20px;
|
126 |
overflow: hidden;
|
127 |
width: 48%;
|
@@ -141,10 +166,10 @@ body {
|
|
141 |
.course-info h3 {
|
142 |
margin-top: 0;
|
143 |
font-size: 18px;
|
144 |
-
color: #
|
145 |
}
|
146 |
.course-info p {
|
147 |
-
color: #
|
148 |
font-size: 14px;
|
149 |
margin-bottom: 10px;
|
150 |
}
|
@@ -163,7 +188,7 @@ body {
|
|
163 |
}
|
164 |
.no-results {
|
165 |
text-align: center;
|
166 |
-
color: #
|
167 |
font-style: italic;
|
168 |
}
|
169 |
"""
|
@@ -177,10 +202,11 @@ iface = gr.Interface(
|
|
177 |
description="Find the most relevant courses from Analytics Vidhya based on your query.",
|
178 |
theme="huggingface",
|
179 |
css=custom_css,
|
180 |
-
examples=[
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
184 |
],
|
185 |
)
|
186 |
|
|
|
2 |
from bs4 import BeautifulSoup
|
3 |
import pandas as pd
|
4 |
import gradio as gr
|
|
|
|
|
5 |
import os
|
6 |
from groq import Groq
|
7 |
import creds # Assuming creds.py holds your API key as creds.api_key
|
|
|
37 |
df = pd.DataFrame(courses)
|
38 |
|
39 |
# Step 3: Initialize the Groq client and set the API key
|
40 |
+
client = Groq(api_key=creds.api_key) # Properly passing the API key
|
41 |
|
42 |
def search_courses(query):
|
43 |
try:
|
44 |
+
print(f"Searching for: {query}")
|
45 |
+
print(f"Number of courses in database: {len(df)}")
|
|
|
46 |
|
47 |
+
# Prepare the prompt for Groq
|
48 |
+
prompt = f"""Given the following query: "{query}"
|
49 |
+
Please analyze the query and rank the following courses based on their relevance to the query.
|
50 |
+
Prioritize courses from Analytics Vidhya. Provide a relevance score from 0 to 1 for each course.
|
51 |
+
Only return courses with a relevance score of 0.5 or higher.
|
52 |
+
Return the results in the following format:
|
53 |
+
Title: [Course Title]
|
54 |
+
Relevance: [Score]
|
55 |
+
|
56 |
+
Courses:
|
57 |
+
{df['title'].to_string(index=False)}
|
58 |
+
"""
|
59 |
|
60 |
+
print("Sending request to Groq...")
|
61 |
+
# Get response from Groq
|
62 |
+
response = client.chat.completions.create(
|
63 |
+
model="mixtral-8x7b-32768", # Use the appropriate model
|
64 |
+
messages=[{"role": "system", "content": "You are an AI assistant specialized in course recommendations."},
|
65 |
+
{"role": "user", "content": prompt}],
|
66 |
+
temperature=0.2,
|
67 |
+
max_tokens=1000
|
68 |
+
)
|
69 |
+
print("Received response from Groq")
|
70 |
|
71 |
+
# Parse Groq's response
|
|
|
|
|
|
|
72 |
results = []
|
73 |
+
print("Groq response content:")
|
74 |
+
print(response.choices[0].message.content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
for line in response.choices[0].message.content.split('\n'):
|
77 |
+
if line.startswith('Title:'):
|
78 |
+
title = line.split('Title:')[1].strip()
|
79 |
+
print(f"Found title: {title}")
|
80 |
+
elif line.startswith('Relevance:'):
|
81 |
+
relevance = float(line.split('Relevance:')[1].strip())
|
82 |
+
print(f"Relevance for {title}: {relevance}")
|
83 |
+
if relevance >= 0.5:
|
84 |
+
matching_courses = df[df['title'] == title]
|
85 |
+
if not matching_courses.empty:
|
86 |
+
course = matching_courses.iloc[0]
|
87 |
+
results.append({
|
88 |
+
'title': title,
|
89 |
+
'image_url': course['image_url'],
|
90 |
+
'course_link': course['course_link'],
|
91 |
+
'score': relevance
|
92 |
+
})
|
93 |
+
print(f"Added course: {title}")
|
94 |
+
else:
|
95 |
+
print(f"Warning: Course not found in database: {title}")
|
96 |
+
|
97 |
+
print(f"Number of results found: {len(results)}")
|
98 |
+
return sorted(results, key=lambda x: x['score'], reverse=True)[:10] # Return top 10 results
|
99 |
|
100 |
except Exception as e:
|
101 |
+
print(f"An error occurred in search_courses: {str(e)}")
|
102 |
return []
|
103 |
|
104 |
def gradio_search(query):
|
|
|
110 |
course_title = item['title']
|
111 |
course_image = item['image_url']
|
112 |
course_link = item['course_link']
|
113 |
+
relevance_score = round(item['score'] * 100, 2)
|
114 |
|
115 |
html_output += f'''
|
116 |
<div class="course-card">
|
|
|
126 |
else:
|
127 |
return '<p class="no-results">No results found. Please try a different query.</p>'
|
128 |
|
129 |
+
# Custom CSS for the Gradio interface
|
130 |
custom_css = """
|
131 |
body {
|
132 |
font-family: Arial, sans-serif;
|
133 |
+
background-color: #000000; /* Set background to black */
|
134 |
+
color: #ffffff; /* Set text color to white for contrast */
|
135 |
}
|
136 |
.container {
|
137 |
max-width: 800px;
|
138 |
margin: 0 auto;
|
139 |
padding: 20px;
|
|
|
140 |
}
|
141 |
.results-container {
|
142 |
display: flex;
|
|
|
144 |
justify-content: space-between;
|
145 |
}
|
146 |
.course-card {
|
147 |
+
background-color: white;
|
148 |
border-radius: 8px;
|
149 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
150 |
margin-bottom: 20px;
|
151 |
overflow: hidden;
|
152 |
width: 48%;
|
|
|
166 |
.course-info h3 {
|
167 |
margin-top: 0;
|
168 |
font-size: 18px;
|
169 |
+
color: #333;
|
170 |
}
|
171 |
.course-info p {
|
172 |
+
color: #666;
|
173 |
font-size: 14px;
|
174 |
margin-bottom: 10px;
|
175 |
}
|
|
|
188 |
}
|
189 |
.no-results {
|
190 |
text-align: center;
|
191 |
+
color: #666;
|
192 |
font-style: italic;
|
193 |
}
|
194 |
"""
|
|
|
202 |
description="Find the most relevant courses from Analytics Vidhya based on your query.",
|
203 |
theme="huggingface",
|
204 |
css=custom_css,
|
205 |
+
examples=[
|
206 |
+
["machine learning for beginners"],
|
207 |
+
["advanced data visualization techniques"],
|
208 |
+
["python programming basics"],
|
209 |
+
["Business Analytics"]
|
210 |
],
|
211 |
)
|
212 |
|