Spaces:
Sleeping
Sleeping
File size: 2,412 Bytes
1d91ffa 4d16da0 1d91ffa 4beb772 73ab43d 4beb772 4d16da0 bc10f71 9ed9be5 4d16da0 1d91ffa 9ed9be5 1d91ffa 4beb772 1d91ffa 9ed9be5 4d16da0 1d91ffa 8dfd657 1d91ffa 9ed9be5 1d91ffa 4d16da0 1d91ffa 4d16da0 9ed9be5 1d91ffa 9ed9be5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
import openai
from datasets import load_dataset
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize OpenAI API key
openai.api_key = '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'
# Load just one dataset to start
dataset = load_dataset("rungalileo/ragbench", "hotpotqa", split='train')
logger.info("Dataset loaded successfully")
import gradio as gr
import openai
from datasets import load_dataset
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize OpenAI API key
openai.api_key = 'YOUR_API_KEY'
# Load just one dataset to start
dataset = load_dataset("rungalileo/ragbench", "hotpotqa", split='train')
logger.info("Dataset loaded successfully")
def process_query(query):
try:
# Get relevant documents
context = dataset['documents'][0]
response = openai.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a confident expert assistant. Provide direct, clear answers based on the available information. Focus on what you can determine from the context and suggest exploring related topics when needed. Never apologize - maintain a positive, solution-focused tone."},
{"role": "user", "content": f"Context: {context}\nQuestion: {query}"}
],
max_tokens=300,
temperature=0.7,
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"Let's explore information about {query} from other sections of our database. What specific aspects would you like to know more about?"
# Create simple Gradio interface
demo = gr.Interface(
fn=process_query,
inputs=gr.Textbox(label="Question"),
outputs=gr.Textbox(label="Answer"),
title="RagBench QA System",
description="Ask questions about HotpotQA dataset",
examples=[
["What role does T-cell count play in severe human adenovirus type 55 (HAdV-55) infection?"],
["In what school district is Governor John R. Rogers High School located?"],
]
)
if __name__ == "__main__":
demo.launch(debug=True)
|