Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,108 +13,67 @@ import nltk
|
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
-
#
|
17 |
-
|
|
|
|
|
|
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
# Initialize models and configurations
|
23 |
-
model_name = 'intfloat/e5-small'
|
24 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
26 |
embedding_model.client.to(device)
|
27 |
|
28 |
-
|
29 |
-
vectordb = Chroma(
|
30 |
-
persist_directory='./docs/chroma/',
|
31 |
-
embedding_function=embedding_model
|
32 |
-
)
|
33 |
-
|
34 |
-
def process_query(query):
|
35 |
try:
|
36 |
-
logger.info(f"Processing query: {query}")
|
37 |
|
38 |
-
# Get relevant documents
|
39 |
-
relevant_docs = vectordb.
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
time.sleep(1)
|
44 |
|
45 |
-
# Generate response using OpenAI
|
46 |
response = openai.chat.completions.create(
|
47 |
model="gpt-4",
|
48 |
messages=[
|
49 |
-
{"role": "system", "content": "You are a
|
50 |
-
{"role": "user", "content": f"
|
51 |
],
|
52 |
max_tokens=300,
|
53 |
temperature=0.7,
|
54 |
)
|
55 |
|
56 |
-
|
57 |
-
logger.info("Successfully generated response")
|
58 |
-
|
59 |
-
# Extract and display metrics
|
60 |
-
metrics = extract_metrics(query, answer, relevant_docs)
|
61 |
-
|
62 |
-
return answer, metrics
|
63 |
|
64 |
except Exception as e:
|
65 |
logger.error(f"Error processing query: {str(e)}")
|
66 |
-
return f"Error: {str(e)}"
|
67 |
|
68 |
-
|
69 |
-
try:
|
70 |
-
context = " ".join([doc.page_content for doc in relevant_docs])
|
71 |
-
metrics_prompt = f"""
|
72 |
-
Question: {query}
|
73 |
-
Context: {context}
|
74 |
-
Response: {response}
|
75 |
-
|
76 |
-
Extract metrics for:
|
77 |
-
- Context Relevance
|
78 |
-
- Context Utilization
|
79 |
-
- Completeness
|
80 |
-
- Response Quality
|
81 |
-
"""
|
82 |
-
|
83 |
-
metrics_response = openai.chat.completions.create(
|
84 |
-
model="gpt-4",
|
85 |
-
messages=[{"role": "user", "content": metrics_prompt}],
|
86 |
-
max_tokens=150,
|
87 |
-
temperature=0.7,
|
88 |
-
)
|
89 |
-
|
90 |
-
return metrics_response.choices[0].message.content.strip()
|
91 |
-
except Exception as e:
|
92 |
-
return "Metrics calculation failed"
|
93 |
-
|
94 |
-
# Create Gradio interface
|
95 |
demo = gr.Interface(
|
96 |
fn=process_query,
|
97 |
inputs=[
|
98 |
-
gr.Textbox(
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
102 |
)
|
103 |
],
|
104 |
-
outputs=
|
105 |
-
|
106 |
-
|
107 |
-
],
|
108 |
-
title="RAG-Powered Question Answering System",
|
109 |
-
description="Ask questions and get answers based on the embedded document knowledge.",
|
110 |
examples=[
|
111 |
-
["What role does T-cell count play in severe human adenovirus type 55 (HAdV-55) infection?"],
|
112 |
-
["In what school district is Governor John R. Rogers High School located?"],
|
113 |
-
["Is there a functional neural correlate of individual differences in cardiovascular reactivity?"]
|
114 |
-
["How do I select Natural mode?"]
|
115 |
]
|
116 |
)
|
117 |
|
118 |
-
# Launch with debugging enabled
|
119 |
if __name__ == "__main__":
|
120 |
demo.launch(debug=True)
|
|
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
+
# Load the ragbench datasets
|
17 |
+
ragbench = {}
|
18 |
+
for dataset in ['covidqa', 'cuad', 'delucionqa', 'emanual', 'expertqa', 'finqa', 'hagrid', 'hotpotqa', 'msmarco', 'pubmedqa', 'tatqa', 'techqa']:
|
19 |
+
ragbench[dataset] = load_dataset("rungalileo/ragbench", dataset)
|
20 |
+
logger.info(f"Loaded {dataset}")
|
21 |
|
22 |
+
# Initialize with a stronger model for better semantic understanding
|
23 |
+
model_name = 'sentence-transformers/all-mpnet-base-v2'
|
|
|
|
|
|
|
24 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
26 |
embedding_model.client.to(device)
|
27 |
|
28 |
+
def process_query(query, dataset_choice):
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
try:
|
30 |
+
logger.info(f"Processing query for {dataset_choice}: {query}")
|
31 |
|
32 |
+
# Get relevant documents specific to the chosen dataset
|
33 |
+
relevant_docs = vectordb.max_marginal_relevance_search(
|
34 |
+
query,
|
35 |
+
k=5, # Top 5 most relevant documents
|
36 |
+
fetch_k=10 # Fetch top 10 then select most diverse 5
|
37 |
+
)
|
38 |
|
39 |
+
context = " ".join([doc.page_content for doc in relevant_docs])
|
|
|
40 |
|
|
|
41 |
response = openai.chat.completions.create(
|
42 |
model="gpt-4",
|
43 |
messages=[
|
44 |
+
{"role": "system", "content": "You are a specialized assistant for the RagBench dataset. Provide precise answers based solely on the given context."},
|
45 |
+
{"role": "user", "content": f"Dataset: {dataset_choice}\nContext: {context}\nQuestion: {query}\n\nProvide a detailed answer using only the information from the context above."}
|
46 |
],
|
47 |
max_tokens=300,
|
48 |
temperature=0.7,
|
49 |
)
|
50 |
|
51 |
+
return response.choices[0].message.content.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
except Exception as e:
|
54 |
logger.error(f"Error processing query: {str(e)}")
|
55 |
+
return f"Error: {str(e)}"
|
56 |
|
57 |
+
# Create Gradio interface with dataset selection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
demo = gr.Interface(
|
59 |
fn=process_query,
|
60 |
inputs=[
|
61 |
+
gr.Textbox(label="Question", placeholder="Type your question here...", lines=2),
|
62 |
+
gr.Dropdown(
|
63 |
+
choices=list(ragbench.keys()),
|
64 |
+
label="Select Dataset",
|
65 |
+
value="hotpotqa"
|
66 |
)
|
67 |
],
|
68 |
+
outputs=gr.Textbox(label="Answer", lines=5),
|
69 |
+
title="RagBench Question Answering System",
|
70 |
+
description="Ask questions across different RagBench datasets",
|
|
|
|
|
|
|
71 |
examples=[
|
72 |
+
["What role does T-cell count play in severe human adenovirus type 55 (HAdV-55) infection?", "covidqa"],
|
73 |
+
["In what school district is Governor John R. Rogers High School located?", "hotpotqa"],
|
74 |
+
["Is there a functional neural correlate of individual differences in cardiovascular reactivity?", "pubmedqa"]
|
|
|
75 |
]
|
76 |
)
|
77 |
|
|
|
78 |
if __name__ == "__main__":
|
79 |
demo.launch(debug=True)
|