Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,113 +1,29 @@
|
|
| 1 |
-
import torch
|
| 2 |
import gradio as gr
|
| 3 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
| 4 |
-
from langchain_community.vectorstores import Chroma
|
| 5 |
import openai
|
| 6 |
-
import time
|
| 7 |
-
import logging
|
| 8 |
from datasets import load_dataset
|
| 9 |
-
|
| 10 |
-
import nltk
|
| 11 |
-
from langchain.docstore.document import Document
|
| 12 |
-
from tqdm import tqdm
|
| 13 |
-
import os
|
| 14 |
|
| 15 |
# Set up logging
|
| 16 |
logging.basicConfig(level=logging.INFO)
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
| 19 |
-
# Download NLTK data
|
| 20 |
-
nltk.download('punkt')
|
| 21 |
-
nltk.download('punkt_tab')
|
| 22 |
-
nltk.download('averaged_perceptron_tagger')
|
| 23 |
-
nltk.download('stopwords')
|
| 24 |
-
|
| 25 |
# Initialize OpenAI API key
|
| 26 |
openai.api_key = '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'
|
| 27 |
|
| 28 |
-
# Load
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
datasets_to_load = ['covidqa', 'hotpotqa', 'pubmedqa']
|
| 32 |
-
|
| 33 |
-
for dataset in datasets_to_load:
|
| 34 |
-
try:
|
| 35 |
-
ragbench[dataset] = load_dataset("rungalileo/ragbench", dataset, split='train')
|
| 36 |
-
logger.info(f"Successfully loaded {dataset}")
|
| 37 |
-
except Exception as e:
|
| 38 |
-
logger.error(f"Failed to load {dataset}: {e}")
|
| 39 |
-
continue
|
| 40 |
-
|
| 41 |
-
print(f"Loaded {len(ragbench)} datasets successfully")
|
| 42 |
-
|
| 43 |
-
# Initialize embedding model
|
| 44 |
-
model_name = 'sentence-transformers/all-mpnet-base-v2'
|
| 45 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 46 |
-
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
| 47 |
-
embedding_model.client.to(device)
|
| 48 |
|
| 49 |
-
def
|
| 50 |
-
chunks = []
|
| 51 |
-
for doc in documents:
|
| 52 |
-
if isinstance(doc, list):
|
| 53 |
-
for passage in doc:
|
| 54 |
-
sentences = sent_tokenize(passage)
|
| 55 |
-
current_chunk = ""
|
| 56 |
-
for sentence in sentences:
|
| 57 |
-
if len(current_chunk) + len(sentence) <= max_chunk_size:
|
| 58 |
-
current_chunk += sentence + " "
|
| 59 |
-
else:
|
| 60 |
-
chunks.append(current_chunk.strip())
|
| 61 |
-
current_chunk = sentence + " "
|
| 62 |
-
if current_chunk:
|
| 63 |
-
chunks.append(current_chunk.strip())
|
| 64 |
-
else:
|
| 65 |
-
sentences = sent_tokenize(doc)
|
| 66 |
-
current_chunk = ""
|
| 67 |
-
for sentence in sentences:
|
| 68 |
-
if len(current_chunk) + len(sentence) <= max_chunk_size:
|
| 69 |
-
current_chunk += sentence + " "
|
| 70 |
-
else:
|
| 71 |
-
chunks.append(current_chunk.strip())
|
| 72 |
-
current_chunk = sentence + " "
|
| 73 |
-
if current_chunk:
|
| 74 |
-
chunks.append(current_chunk.strip())
|
| 75 |
-
return chunks
|
| 76 |
-
|
| 77 |
-
# Process documents
|
| 78 |
-
documents = []
|
| 79 |
-
for dataset_name, dataset in ragbench.items():
|
| 80 |
-
logger.info(f"Processing {dataset_name}")
|
| 81 |
-
original_documents = dataset['documents']
|
| 82 |
-
chunked_documents = chunk_documents_semantic(original_documents)
|
| 83 |
-
documents.extend([Document(page_content=chunk) for chunk in chunked_documents])
|
| 84 |
-
logger.info(f"Processed {len(chunked_documents)} chunks from {dataset_name}")
|
| 85 |
-
|
| 86 |
-
# Initialize vectordb
|
| 87 |
-
vectordb = Chroma.from_documents(
|
| 88 |
-
documents=documents,
|
| 89 |
-
embedding=embedding_model,
|
| 90 |
-
persist_directory='./docs/chroma/'
|
| 91 |
-
)
|
| 92 |
-
vectordb.persist()
|
| 93 |
-
|
| 94 |
-
def process_query(query, dataset_choice):
|
| 95 |
try:
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
relevant_docs = vectordb.max_marginal_relevance_search(
|
| 99 |
-
query,
|
| 100 |
-
k=5,
|
| 101 |
-
fetch_k=10
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
-
context = " ".join([doc.page_content for doc in relevant_docs])
|
| 105 |
|
| 106 |
response = openai.chat.completions.create(
|
| 107 |
model="gpt-3.5-turbo",
|
| 108 |
messages=[
|
| 109 |
-
{"role": "system", "content": "You are a
|
| 110 |
-
{"role": "user", "content": f"
|
| 111 |
],
|
| 112 |
max_tokens=300,
|
| 113 |
temperature=0.7,
|
|
@@ -116,28 +32,15 @@ def process_query(query, dataset_choice):
|
|
| 116 |
return response.choices[0].message.content.strip()
|
| 117 |
|
| 118 |
except Exception as e:
|
| 119 |
-
|
| 120 |
-
return f"Error: {str(e)}"
|
| 121 |
|
| 122 |
-
# Create Gradio interface
|
| 123 |
demo = gr.Interface(
|
| 124 |
fn=process_query,
|
| 125 |
-
inputs=
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
label="Select Dataset",
|
| 130 |
-
value="hotpotqa"
|
| 131 |
-
)
|
| 132 |
-
],
|
| 133 |
-
outputs=gr.Textbox(label="Answer", lines=5),
|
| 134 |
-
title="RagBench Question Answering System",
|
| 135 |
-
description="Ask questions across different RagBench datasets",
|
| 136 |
-
examples=[
|
| 137 |
-
["What role does T-cell count play in severe human adenovirus type 55 (HAdV-55) infection?", "covidqa"],
|
| 138 |
-
["In what school district is Governor John R. Rogers High School located?", "hotpotqa"],
|
| 139 |
-
["Is there a functional neural correlate of individual differences in cardiovascular reactivity?", "pubmedqa"]
|
| 140 |
-
]
|
| 141 |
)
|
| 142 |
|
| 143 |
if __name__ == "__main__":
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
import openai
|
|
|
|
|
|
|
| 3 |
from datasets import load_dataset
|
| 4 |
+
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Set up logging
|
| 7 |
logging.basicConfig(level=logging.INFO)
|
| 8 |
logger = logging.getLogger(__name__)
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# Initialize OpenAI API key
|
| 11 |
openai.api_key = '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'
|
| 12 |
|
| 13 |
+
# Load just one dataset to start
|
| 14 |
+
dataset = load_dataset("rungalileo/ragbench", "hotpotqa", split='train')
|
| 15 |
+
logger.info("Dataset loaded successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
def process_query(query):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
try:
|
| 19 |
+
# Get a relevant document from the dataset
|
| 20 |
+
context = dataset['documents'][0] # Using first document as example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
response = openai.chat.completions.create(
|
| 23 |
model="gpt-3.5-turbo",
|
| 24 |
messages=[
|
| 25 |
+
{"role": "system", "content": "You are a helpful assistant for the RagBench dataset."},
|
| 26 |
+
{"role": "user", "content": f"Context: {context}\nQuestion: {query}"}
|
| 27 |
],
|
| 28 |
max_tokens=300,
|
| 29 |
temperature=0.7,
|
|
|
|
| 32 |
return response.choices[0].message.content.strip()
|
| 33 |
|
| 34 |
except Exception as e:
|
| 35 |
+
return f"Query processing: {str(e)}"
|
|
|
|
| 36 |
|
| 37 |
+
# Create simple Gradio interface
|
| 38 |
demo = gr.Interface(
|
| 39 |
fn=process_query,
|
| 40 |
+
inputs=gr.Textbox(label="Question"),
|
| 41 |
+
outputs=gr.Textbox(label="Answer"),
|
| 42 |
+
title="RagBench QA System",
|
| 43 |
+
description="Ask questions about HotpotQA dataset"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
)
|
| 45 |
|
| 46 |
if __name__ == "__main__":
|