Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,22 +16,31 @@ import os
|
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
-
# Download
|
20 |
nltk.download('punkt')
|
21 |
nltk.download('punkt_tab')
|
22 |
nltk.download('averaged_perceptron_tagger')
|
23 |
nltk.download('stopwords')
|
24 |
|
25 |
# Initialize OpenAI API key
|
26 |
-
openai.api_key = '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'
|
27 |
|
28 |
-
# Load
|
|
|
29 |
ragbench = {}
|
30 |
-
|
31 |
-
ragbench[dataset] = load_dataset("rungalileo/ragbench", dataset)
|
32 |
-
logger.info(f"Loaded {dataset}")
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
model_name = 'sentence-transformers/all-mpnet-base-v2'
|
36 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
@@ -65,41 +74,28 @@ def chunk_documents_semantic(documents, max_chunk_size=500):
|
|
65 |
chunks.append(current_chunk.strip())
|
66 |
return chunks
|
67 |
|
68 |
-
# Process documents
|
69 |
-
batch_size = 1000
|
70 |
documents = []
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
for i in range(0, len(original_documents), batch_size):
|
78 |
-
batch = original_documents[i:i + batch_size]
|
79 |
-
chunked_documents = chunk_documents_semantic(batch)
|
80 |
-
documents.extend([Document(page_content=chunk) for chunk in chunked_documents])
|
81 |
-
|
82 |
-
if len(documents) >= batch_size:
|
83 |
-
vectordb = Chroma.from_documents(
|
84 |
-
documents=documents,
|
85 |
-
embedding=embedding_model,
|
86 |
-
persist_directory=f'./docs/chroma_{total_processed}'
|
87 |
-
)
|
88 |
-
vectordb.persist()
|
89 |
-
total_processed += len(documents)
|
90 |
-
documents = []
|
91 |
|
92 |
-
#
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
96 |
)
|
|
|
97 |
|
98 |
def process_query(query, dataset_choice):
|
99 |
try:
|
100 |
logger.info(f"Processing query for {dataset_choice}: {query}")
|
101 |
|
102 |
-
relevant_docs =
|
103 |
query,
|
104 |
k=5,
|
105 |
fetch_k=10
|
@@ -123,7 +119,7 @@ def process_query(query, dataset_choice):
|
|
123 |
logger.error(f"Error processing query: {str(e)}")
|
124 |
return f"Error: {str(e)}"
|
125 |
|
126 |
-
# Create Gradio interface
|
127 |
demo = gr.Interface(
|
128 |
fn=process_query,
|
129 |
inputs=[
|
|
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
+
# Download NLTK data
|
20 |
nltk.download('punkt')
|
21 |
nltk.download('punkt_tab')
|
22 |
nltk.download('averaged_perceptron_tagger')
|
23 |
nltk.download('stopwords')
|
24 |
|
25 |
# Initialize OpenAI API key
|
26 |
+
openai.api_key = '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'
|
27 |
|
28 |
+
# Load selected datasets
|
29 |
+
logger.info("Starting dataset loading...")
|
30 |
ragbench = {}
|
31 |
+
datasets_to_load = ['covidqa', 'hotpotqa', 'pubmedqa']
|
|
|
|
|
32 |
|
33 |
+
for dataset in datasets_to_load:
|
34 |
+
try:
|
35 |
+
ragbench[dataset] = load_dataset("rungalileo/ragbench", dataset, split='train')
|
36 |
+
logger.info(f"Successfully loaded {dataset}")
|
37 |
+
except Exception as e:
|
38 |
+
logger.error(f"Failed to load {dataset}: {e}")
|
39 |
+
continue
|
40 |
+
|
41 |
+
print(f"Loaded {len(ragbench)} datasets successfully")
|
42 |
+
|
43 |
+
# Initialize embedding model
|
44 |
model_name = 'sentence-transformers/all-mpnet-base-v2'
|
45 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
46 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
|
|
74 |
chunks.append(current_chunk.strip())
|
75 |
return chunks
|
76 |
|
77 |
+
# Process documents
|
|
|
78 |
documents = []
|
79 |
+
for dataset_name, dataset in ragbench.items():
|
80 |
+
logger.info(f"Processing {dataset_name}")
|
81 |
+
original_documents = dataset['documents']
|
82 |
+
chunked_documents = chunk_documents_semantic(original_documents)
|
83 |
+
documents.extend([Document(page_content=chunk) for chunk in chunked_documents])
|
84 |
+
logger.info(f"Processed {len(chunked_documents)} chunks from {dataset_name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
# Initialize vectordb
|
87 |
+
vectordb = Chroma.from_documents(
|
88 |
+
documents=documents,
|
89 |
+
embedding=embedding_model,
|
90 |
+
persist_directory='./docs/chroma/'
|
91 |
)
|
92 |
+
vectordb.persist()
|
93 |
|
94 |
def process_query(query, dataset_choice):
|
95 |
try:
|
96 |
logger.info(f"Processing query for {dataset_choice}: {query}")
|
97 |
|
98 |
+
relevant_docs = vectordb.max_marginal_relevance_search(
|
99 |
query,
|
100 |
k=5,
|
101 |
fetch_k=10
|
|
|
119 |
logger.error(f"Error processing query: {str(e)}")
|
120 |
return f"Error: {str(e)}"
|
121 |
|
122 |
+
# Create Gradio interface
|
123 |
demo = gr.Interface(
|
124 |
fn=process_query,
|
125 |
inputs=[
|