Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Initialize models and configurations
|
2 |
model_name = 'intfloat/e5-small'
|
3 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -9,3 +30,91 @@ vectordb = Chroma(
|
|
9 |
persist_directory='./docs/chroma/',
|
10 |
embedding_function=embedding_model
|
11 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain_community.vectorstores import Chroma
|
5 |
+
import openai
|
6 |
+
import time
|
7 |
+
import logging
|
8 |
+
from datasets import load_dataset
|
9 |
+
from nltk.tokenize import sent_tokenize
|
10 |
+
import nltk
|
11 |
+
|
12 |
+
# Set up logging
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Initialize OpenAI API key
|
17 |
+
openai.api_key = 'YOUR_API_KEY' # Replace with your API key
|
18 |
+
|
19 |
+
# Download NLTK data
|
20 |
+
nltk.download('punkt')
|
21 |
+
|
22 |
# Initialize models and configurations
|
23 |
model_name = 'intfloat/e5-small'
|
24 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
30 |
persist_directory='./docs/chroma/',
|
31 |
embedding_function=embedding_model
|
32 |
)
|
33 |
+
|
34 |
+
def process_query(query):
|
35 |
+
try:
|
36 |
+
logger.info(f"Processing query: {query}")
|
37 |
+
|
38 |
+
# Get relevant documents
|
39 |
+
relevant_docs = vectordb.similarity_search(query, k=30)
|
40 |
+
context = " ".join([doc.page_content for doc in relevant_docs])
|
41 |
+
|
42 |
+
# Add delay to respect API rate limits
|
43 |
+
time.sleep(1)
|
44 |
+
|
45 |
+
# Generate response using OpenAI
|
46 |
+
response = openai.chat.completions.create(
|
47 |
+
model="gpt-4",
|
48 |
+
messages=[
|
49 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
50 |
+
{"role": "user", "content": f"Given the document: {context}\n\nGenerate a response to the query: {query}"}
|
51 |
+
],
|
52 |
+
max_tokens=300,
|
53 |
+
temperature=0.7,
|
54 |
+
)
|
55 |
+
|
56 |
+
answer = response.choices[0].message.content.strip()
|
57 |
+
logger.info("Successfully generated response")
|
58 |
+
|
59 |
+
# Extract and display metrics
|
60 |
+
metrics = extract_metrics(query, answer, relevant_docs)
|
61 |
+
|
62 |
+
return answer, metrics
|
63 |
+
|
64 |
+
except Exception as e:
|
65 |
+
logger.error(f"Error processing query: {str(e)}")
|
66 |
+
return f"Error: {str(e)}", "Metrics unavailable"
|
67 |
+
|
68 |
+
def extract_metrics(query, response, relevant_docs):
|
69 |
+
try:
|
70 |
+
context = " ".join([doc.page_content for doc in relevant_docs])
|
71 |
+
metrics_prompt = f"""
|
72 |
+
Question: {query}
|
73 |
+
Context: {context}
|
74 |
+
Response: {response}
|
75 |
+
|
76 |
+
Extract metrics for:
|
77 |
+
- Context Relevance
|
78 |
+
- Context Utilization
|
79 |
+
- Completeness
|
80 |
+
- Response Quality
|
81 |
+
"""
|
82 |
+
|
83 |
+
metrics_response = openai.chat.completions.create(
|
84 |
+
model="gpt-4",
|
85 |
+
messages=[{"role": "user", "content": metrics_prompt}],
|
86 |
+
max_tokens=150,
|
87 |
+
temperature=0.7,
|
88 |
+
)
|
89 |
+
|
90 |
+
return metrics_response.choices[0].message.content.strip()
|
91 |
+
except Exception as e:
|
92 |
+
return "Metrics calculation failed"
|
93 |
+
|
94 |
+
# Create Gradio interface
|
95 |
+
demo = gr.Interface(
|
96 |
+
fn=process_query,
|
97 |
+
inputs=[
|
98 |
+
gr.Textbox(
|
99 |
+
label="Enter your question",
|
100 |
+
placeholder="Type your question here...",
|
101 |
+
lines=2
|
102 |
+
)
|
103 |
+
],
|
104 |
+
outputs=[
|
105 |
+
gr.Textbox(label="Answer", lines=5),
|
106 |
+
gr.Textbox(label="Metrics", lines=4)
|
107 |
+
],
|
108 |
+
title="RAG-Powered Question Answering System",
|
109 |
+
description="Ask questions and get answers based on the embedded document knowledge.",
|
110 |
+
examples=[
|
111 |
+
["What role does T-cell count play in severe human adenovirus type 55 (HAdV-55) infection?"],
|
112 |
+
["In what school district is Governor John R. Rogers High School located?"],
|
113 |
+
["Is there a functional neural correlate of individual differences in cardiovascular reactivity?"],
|
114 |
+
["How do I select Natural mode?"]
|
115 |
+
]
|
116 |
+
)
|
117 |
+
|
118 |
+
# Launch with debugging enabled
|
119 |
+
if __name__ == "__main__":
|
120 |
+
demo.launch(debug=True)
|