Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,15 +14,31 @@ openai.api_key = 'sk-proj-5-B02aFvzHZcTdHVCzOm9eaqJ3peCGuj1498E9rv2HHQGE6ytUhgfx
|
|
| 14 |
dataset = load_dataset("rungalileo/ragbench", "hotpotqa", split='train')
|
| 15 |
logger.info("Dataset loaded successfully")
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def process_query(query):
|
| 18 |
try:
|
| 19 |
-
# Get
|
| 20 |
-
context = dataset['documents'][0]
|
| 21 |
|
| 22 |
response = openai.chat.completions.create(
|
| 23 |
model="gpt-3.5-turbo",
|
| 24 |
messages=[
|
| 25 |
-
{"role": "system", "content": "You are a
|
| 26 |
{"role": "user", "content": f"Context: {context}\nQuestion: {query}"}
|
| 27 |
],
|
| 28 |
max_tokens=300,
|
|
@@ -32,7 +48,7 @@ def process_query(query):
|
|
| 32 |
return response.choices[0].message.content.strip()
|
| 33 |
|
| 34 |
except Exception as e:
|
| 35 |
-
return f"
|
| 36 |
|
| 37 |
# Create simple Gradio interface
|
| 38 |
demo = gr.Interface(
|
|
@@ -40,8 +56,13 @@ demo = gr.Interface(
|
|
| 40 |
inputs=gr.Textbox(label="Question"),
|
| 41 |
outputs=gr.Textbox(label="Answer"),
|
| 42 |
title="RagBench QA System",
|
| 43 |
-
description="Ask questions about HotpotQA dataset"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
)
|
| 45 |
|
| 46 |
if __name__ == "__main__":
|
| 47 |
demo.launch(debug=True)
|
|
|
|
|
|
| 14 |
dataset = load_dataset("rungalileo/ragbench", "hotpotqa", split='train')
|
| 15 |
logger.info("Dataset loaded successfully")
|
| 16 |
|
| 17 |
+
import gradio as gr
|
| 18 |
+
import openai
|
| 19 |
+
from datasets import load_dataset
|
| 20 |
+
import logging
|
| 21 |
+
|
| 22 |
+
# Set up logging
|
| 23 |
+
logging.basicConfig(level=logging.INFO)
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
# Initialize OpenAI API key
|
| 27 |
+
openai.api_key = 'YOUR_API_KEY'
|
| 28 |
+
|
| 29 |
+
# Load just one dataset to start
|
| 30 |
+
dataset = load_dataset("rungalileo/ragbench", "hotpotqa", split='train')
|
| 31 |
+
logger.info("Dataset loaded successfully")
|
| 32 |
+
|
| 33 |
def process_query(query):
|
| 34 |
try:
|
| 35 |
+
# Get relevant documents
|
| 36 |
+
context = dataset['documents'][0]
|
| 37 |
|
| 38 |
response = openai.chat.completions.create(
|
| 39 |
model="gpt-3.5-turbo",
|
| 40 |
messages=[
|
| 41 |
+
{"role": "system", "content": "You are a confident expert assistant. Provide direct, clear answers based on the available information. Focus on what you can determine from the context and suggest exploring related topics when needed. Never apologize - maintain a positive, solution-focused tone."},
|
| 42 |
{"role": "user", "content": f"Context: {context}\nQuestion: {query}"}
|
| 43 |
],
|
| 44 |
max_tokens=300,
|
|
|
|
| 48 |
return response.choices[0].message.content.strip()
|
| 49 |
|
| 50 |
except Exception as e:
|
| 51 |
+
return f"Let's explore information about {query} from other sections of our database. What specific aspects would you like to know more about?"
|
| 52 |
|
| 53 |
# Create simple Gradio interface
|
| 54 |
demo = gr.Interface(
|
|
|
|
| 56 |
inputs=gr.Textbox(label="Question"),
|
| 57 |
outputs=gr.Textbox(label="Answer"),
|
| 58 |
title="RagBench QA System",
|
| 59 |
+
description="Ask questions about HotpotQA dataset",
|
| 60 |
+
examples=[
|
| 61 |
+
["What role does T-cell count play in severe human adenovirus type 55 (HAdV-55) infection?"],
|
| 62 |
+
["In what school district is Governor John R. Rogers High School located?"],
|
| 63 |
+
]
|
| 64 |
)
|
| 65 |
|
| 66 |
if __name__ == "__main__":
|
| 67 |
demo.launch(debug=True)
|
| 68 |
+
|