File size: 23,493 Bytes
f126604 d377221 f126604 7e095f4 ab172ce fa9b390 069d7f4 60e4c3d 94662cd 22975da 069d7f4 f126604 7757822 ab172ce e3305a8 069d7f4 ac9926b 3069ccd dfff005 ab172ce 64888a0 f0898a3 ab172ce dfff005 f0898a3 3069ccd f126604 ac9926b f126604 069d7f4 5620229 60e4c3d 5620229 069d7f4 94662cd ab172ce 94662cd ab172ce 5620229 ab172ce dfff005 f0898a3 6c1d81c f0898a3 ab172ce 6c1d81c dfff005 5620229 8dff938 94662cd 8dff938 60e4c3d 8dff938 60e4c3d 94662cd ac9926b 94662cd ac9926b 94662cd ab172ce dfff005 ac9926b fa9b390 3069ccd ac9926b 3069ccd ac9926b 3069ccd ac9926b 3069ccd ac9926b 3069ccd ac9926b 3069ccd ac9926b 3069ccd ac9926b 3069ccd ac9926b 3069ccd ac9926b 3069ccd ac9926b ab172ce ac9926b 60e4c3d f0898a3 fa9b390 ac9926b f0898a3 fa9b390 dfff005 ab172ce f0898a3 94662cd ab172ce dfff005 94662cd ab172ce 3069ccd fa9b390 ab172ce 94662cd fa9b390 ac9926b ab172ce 94662cd ab172ce 3069ccd ab172ce dfff005 94662cd fa9b390 94662cd fa9b390 94662cd 60e4c3d dfff005 60e4c3d 069d7f4 ac9926b 069d7f4 ac9926b 069d7f4 f126604 94662cd ab172ce dfff005 ab172ce dfff005 ab172ce dfff005 ab172ce dfff005 ab172ce f0898a3 fa9b390 ab172ce f0898a3 ab172ce 94662cd 3069ccd ac9926b ab172ce bdcc052 e3305a8 3069ccd e3305a8 ea3d9f9 ab172ce ea3d9f9 ab172ce ea3d9f9 ab172ce dfff005 ea3d9f9 ab172ce f126604 e456a0b 069d7f4 ac9926b 069d7f4 ac9926b 069d7f4 ac9926b 069d7f4 ac9926b 9095ee0 0f83542 9095ee0 ac9926b 9095ee0 0f83542 64888a0 9095ee0 0f83542 9095ee0 64888a0 9095ee0 ac9926b 0f83542 64888a0 0f83542 64888a0 0f83542 64888a0 0f83542 9095ee0 0f83542 64888a0 0f83542 64888a0 0f83542 ac9926b 0f83542 ac9926b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
import os
import sys
import json
import logging
import re
import hashlib
import io
import base64
from datetime import datetime
from typing import List, Dict, Optional, Tuple
from enum import Enum
from fastapi import FastAPI, HTTPException, UploadFile, File, Query, Form
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import asyncio
from bson import ObjectId
import speech_recognition as sr
from gtts import gTTS
from pydub import AudioSegment
import PyPDF2
import mimetypes
from txagent.txagent import TxAgent
from db.mongo import get_mongo_client
from fastapi.encoders import jsonable_encoder
from docx import Document
# Logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("TxAgentAPI")
# App
app = FastAPI(title="TxAgent API", version="2.6.0") # Updated version for optional patient_id
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)
# Pydantic Models
class ChatRequest(BaseModel):
message: str
temperature: float = 0.7
max_new_tokens: int = 512
history: Optional[List[Dict]] = None
format: Optional[str] = "clean"
class VoiceInputRequest(BaseModel):
audio_format: str = "wav"
language: str = "en-US"
class VoiceOutputRequest(BaseModel):
text: str
language: str = "en"
slow: bool = False
return_format: str = "mp3" # mp3 or base64
# Enums
class RiskLevel(str, Enum):
NONE = "none"
LOW = "low"
MODERATE = "moderate"
HIGH = "high"
SEVERE = "severe"
# Globals
agent = None
patients_collection = None
analysis_collection = None
alerts_collection = None
# Helpers
def clean_text_response(text: str) -> str:
text = re.sub(r'\n\s*\n', '\n\n', text)
text = re.sub(r'[ ]+', ' ', text)
return text.replace("**", "").replace("__", "").strip()
def extract_section(text: str, heading: str) -> str:
try:
pattern = rf"{re.escape(heading)}:\s*\n(.*?)(?=\n[A-Z][^\n]*:|\Z)"
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
return match.group(1).strip() if match else ""
except Exception as e:
logger.error(f"Section extraction failed for heading '{heading}': {e}")
return ""
def structure_medical_response(text: str) -> Dict:
"""Improved version that handles both markdown and plain text formats"""
def extract_improved(text: str, heading: str) -> str:
patterns = [
rf"{re.escape(heading)}:\s*\n(.*?)(?=\n\s*\n|\Z)",
rf"\*\*{re.escape(heading)}\*\*:\s*\n(.*?)(?=\n\s*\n|\Z)",
rf"{re.escape(heading)}[\s\-]+(.*?)(?=\n\s*\n|\Z)",
rf"\n{re.escape(heading)}\s*\n(.*?)(?=\n\s*\n|\Z)"
]
for pattern in patterns:
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
if match:
content = match.group(1).strip()
content = re.sub(r'^\s*[\-\*]\s*', '', content, flags=re.MULTILINE)
return content
return ""
text = text.replace('**', '').replace('__', '')
return {
"summary": extract_improved(text, "Summary of Patient's Medical History") or
extract_improved(text, "Summarize the patient's medical history"),
"risks": extract_improved(text, "Identify Risks or Red Flags") or
extract_improved(text, "Risks or Red Flags"),
"missed_issues": extract_improved(text, "Missed Diagnoses or Treatments") or
extract_improved(text, "What the doctor might have missed"),
"recommendations": extract_improved(text, "Suggest Next Clinical Steps") or
extract_improved(text, "Suggested Clinical Actions")
}
def detect_suicide_risk(text: str) -> Tuple[RiskLevel, float, List[str]]:
"""Analyze text for suicide risk factors and return assessment"""
suicide_keywords = [
'suicide', 'suicidal', 'kill myself', 'end my life',
'want to die', 'self-harm', 'self harm', 'hopeless',
'no reason to live', 'plan to die'
]
explicit_mentions = [kw for kw in suicide_keywords if kw in text.lower()]
if not explicit_mentions:
return RiskLevel.NONE, 0.0, []
assessment_prompt = (
"Assess the suicide risk level based on this text. "
"Consider frequency, specificity, and severity of statements. "
"Respond with JSON format: {\"risk_level\": \"low/moderate/high/severe\", "
"\"risk_score\": 0-1, \"factors\": [\"list of risk factors\"]}\n\n"
f"Text to assess:\n{text}"
)
try:
response = agent.chat(
message=assessment_prompt,
history=[],
temperature=0.2,
max_new_tokens=256
)
json_match = re.search(r'\{.*\}', response, re.DOTALL)
if json_match:
assessment = json.loads(json_match.group())
return (
RiskLevel(assessment.get("risk_level", "none").lower()),
float(assessment.get("risk_score", 0)),
assessment.get("factors", [])
)
except Exception as e:
logger.error(f"Error in suicide risk assessment: {e}")
risk_score = min(0.1 * len(explicit_mentions), 0.9)
if risk_score > 0.7:
return RiskLevel.HIGH, risk_score, explicit_mentions
elif risk_score > 0.4:
return RiskLevel.MODERATE, risk_score, explicit_mentions
return RiskLevel.LOW, risk_score, explicit_mentions
async def create_alert(patient_id: str, risk_data: dict):
"""Create an alert document in the database"""
alert_doc = {
"patient_id": patient_id,
"type": "suicide_risk",
"level": risk_data["level"],
"score": risk_data["score"],
"factors": risk_data["factors"],
"timestamp": datetime.utcnow(),
"acknowledged": False
}
await alerts_collection.insert_one(alert_doc)
logger.warning(f"⚠️ Created suicide risk alert for patient {patient_id}")
def serialize_patient(patient: dict) -> dict:
patient_copy = patient.copy()
if "_id" in patient_copy:
patient_copy["_id"] = str(patient_copy["_id"])
return patient_copy
def compute_patient_data_hash(data: dict) -> str:
"""Compute SHA-256 hash of patient data or report."""
serialized = json.dumps(data, sort_keys=True)
return hashlib.sha256(serialized.encode()).hexdigest()
def compute_file_content_hash(file_content: bytes) -> str:
"""Compute SHA-256 hash of file content."""
return hashlib.sha256(file_content).hexdigest()
def extract_text_from_pdf(pdf_data: bytes) -> str:
"""Extract text from a PDF file."""
try:
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_data))
text = ""
for page in pdf_reader.pages:
text += page.extract_text() or ""
return clean_text_response(text)
except Exception as e:
logger.error(f"Error extracting text from PDF: {e}")
raise HTTPException(status_code=400, detail="Failed to extract text from PDF")
async def analyze_patient_report(patient_id: Optional[str], report_content: str, file_type: str, file_content: bytes):
"""Analyze a patient report and store results."""
try:
# Use file content hash as identifier if no patient_id is provided
identifier = patient_id if patient_id else compute_file_content_hash(file_content)
report_data = {"identifier": identifier, "content": report_content, "file_type": file_type}
report_hash = compute_patient_data_hash(report_data)
logger.info(f"🧾 Analyzing report for identifier: {identifier}")
# Check if analysis exists and hash matches
existing_analysis = await analysis_collection.find_one({"identifier": identifier, "report_hash": report_hash})
if existing_analysis:
logger.info(f"✅ No changes in report data for {identifier}, skipping analysis")
return existing_analysis
# Construct analysis prompt
prompt = (
"You are a clinical decision support AI. Analyze the following patient report:\n"
"1. Summarize the patient's medical history.\n"
"2. Identify risks or red flags (including mental health and suicide risk).\n"
"3. Highlight missed diagnoses or treatments.\n"
"4. Suggest next clinical steps.\n"
f"\nPatient Report ({file_type}):\n{'-'*40}\n{report_content[:10000]}"
)
# Perform analysis
raw_response = agent.chat(
message=prompt,
history=[],
temperature=0.7,
max_new_tokens=1024
)
structured_response = structure_medical_response(raw_response)
# Suicide risk assessment
risk_level, risk_score, risk_factors = detect_suicide_risk(raw_response)
suicide_risk = {
"level": risk_level.value,
"score": risk_score,
"factors": risk_factors
}
# Store analysis
analysis_doc = {
"identifier": identifier,
"patient_id": patient_id, # May be None
"timestamp": datetime.utcnow(),
"summary": structured_response,
"suicide_risk": suicide_risk,
"raw": raw_response,
"report_hash": report_hash,
"file_type": file_type
}
await analysis_collection.update_one(
{"identifier": identifier, "report_hash": report_hash},
{"$set": analysis_doc},
upsert=True
)
# Create alert for high-risk cases only if patient_id is provided
if patient_id and risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]:
await create_alert(patient_id, suicide_risk)
logger.info(f"✅ Stored analysis for identifier {identifier}")
return analysis_doc
except Exception as e:
logger.error(f"Error analyzing patient report: {e}")
raise HTTPException(status_code=500, detail="Failed to analyze patient report")
async def analyze_all_patients():
"""Analyze all patients in the database."""
patients = await patients_collection.find({}).to_list(length=None)
for patient in patients:
await analyze_patient(patient)
await asyncio.sleep(0.1)
async def analyze_patient(patient: dict):
"""Analyze patient data (existing logic for patient records)."""
try:
serialized = serialize_patient(patient)
patient_id = serialized.get("fhir_id")
patient_hash = compute_patient_data_hash(serialized)
logger.info(f"🧾 Analyzing patient: {patient_id}")
existing_analysis = await analysis_collection.find_one({"patient_id": patient_id})
if existing_analysis and existing_analysis.get("data_hash") == patient_hash:
logger.info(f"✅ No changes in patient data for {patient_id}, skipping analysis")
return
doc = json.dumps(serialized, indent=2)
message = (
"You are a clinical decision support AI.\n\n"
"Given the patient document below:\n"
"1. Summarize the patient's medical history.\n"
"2. Identify risks or red flags (including mental health and suicide risk).\n"
"3. Highlight missed diagnoses or treatments.\n"
"4. Suggest next clinical steps.\n"
f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}"
)
raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024)
structured = structure_medical_response(raw)
risk_level, risk_score, risk_factors = detect_suicide_risk(raw)
suicide_risk = {
"level": risk_level.value,
"score": risk_score,
"factors": risk_factors
}
analysis_doc = {
"identifier": patient_id,
"patient_id": patient_id,
"timestamp": datetime.utcnow(),
"summary": structured,
"suicide_risk": suicide_risk,
"raw": raw,
"data_hash": patient_hash
}
await analysis_collection.update_one(
{"identifier": patient_id},
{"$set": analysis_doc},
upsert=True
)
if risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]:
await create_alert(patient_id, suicide_risk)
logger.info(f"✅ Stored analysis for patient {patient_id}")
except Exception as e:
logger.error(f"Error analyzing patient: {e}")
def recognize_speech(audio_data: bytes, language: str = "en-US") -> str:
"""Convert speech to text using Google's speech recognition."""
recognizer = sr.Recognizer()
try:
with io.BytesIO(audio_data) as audio_file:
with sr.AudioFile(audio_file) as source:
audio = recognizer.record(source)
text = recognizer.recognize_google(audio, language=language)
return text
except sr.UnknownValueError:
logger.error("Google Speech Recognition could not understand audio")
raise HTTPException(status_code=400, detail="Could not understand audio")
except sr.RequestError as e:
logger.error(f"Could not request results from Google Speech Recognition service; {e}")
raise HTTPException(status_code=503, detail="Speech recognition service unavailable")
except Exception as e:
logger.error(f"Error in speech recognition: {e}")
raise HTTPException(status_code=500, detail="Error processing speech")
def text_to_speech(text: str, language: str = "en", slow: bool = False) -> bytes:
"""Convert text to speech using gTTS and return as MP3 bytes."""
try:
tts = gTTS(text=text, lang=language, slow=slow)
mp3_fp = io.BytesIO()
tts.write_to_fp(mp3_fp)
mp3_fp.seek(0)
return mp3_fp.read()
except Exception as e:
logger.error(f"Error in text-to-speech conversion: {e}")
raise HTTPException(status_code=500, detail="Error generating speech")
@app.on_event("startup")
async def startup_event():
global agent, patients_collection, analysis_collection, alerts_collection
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
enable_finish=True,
enable_rag=False,
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=42
)
agent.chat_prompt = (
"You are a clinical assistant AI. Analyze the patient's data and provide clear clinical recommendations."
)
agent.init_model()
logger.info("✅ TxAgent initialized")
db = get_mongo_client()["cps_db"]
patients_collection = db["patients"]
analysis_collection = db["patient_analysis_results"]
alerts_collection = db["clinical_alerts"]
logger.info("📡 Connected to MongoDB")
asyncio.create_task(analyze_all_patients())
@app.get("/status")
async def status():
return {
"status": "running",
"timestamp": datetime.utcnow().isoformat(),
"version": "2.6.0",
"features": ["chat", "voice-input", "voice-output", "patient-analysis", "report-upload"]
}
@app.get("/patients/analysis-results")
async def get_patient_analysis_results(name: Optional[str] = Query(None)):
try:
query = {}
if name:
name_regex = re.compile(name, re.IGNORECASE)
matching_patients = await patients_collection.find({"full_name": name_regex}).to_list(length=None)
patient_ids = [p["fhir_id"] for p in matching_patients if "fhir_id" in p]
if not patient_ids:
return []
query = {"patient_id": {"$in": patient_ids}}
analyses = await analysis_collection.find(query).sort("timestamp", -1).to_list(length=100)
enriched_results = []
for analysis in analyses:
patient = await patients_collection.find_one({"fhir_id": analysis.get("patient_id")})
if patient:
analysis["full_name"] = patient.get("full_name", "Unknown")
analysis["_id"] = str(analysis["_id"])
enriched_results.append(analysis)
return enriched_results
except Exception as e:
logger.error(f"Error fetching analysis results: {e}")
raise HTTPException(status_code=500, detail="Failed to retrieve analysis results")
@app.post("/chat-stream")
async def chat_stream_endpoint(request: ChatRequest):
async def token_stream():
try:
conversation = [{"role": "system", "content": agent.chat_prompt}]
if request.history:
conversation.extend(request.history)
conversation.append({"role": "user", "content": request.message})
input_ids = agent.tokenizer.apply_chat_template(
conversation, add_generation_prompt=True, return_tensors="pt"
).to(agent.device)
output = agent.model.generate(
input_ids,
do_sample=True,
temperature=request.temperature,
max_new_tokens=request.max_new_tokens,
pad_token_id=agent.tokenizer.eos_token_id,
return_dict_in_generate=True
)
text = agent.tokenizer.decode(output["sequences"][0][input_ids.shape[1]:], skip_special_tokens=True)
for chunk in text.split():
yield chunk + " "
await asyncio.sleep(0.05)
except Exception as e:
logger.error(f"Streaming error: {e}")
yield f"⚠️ Error: {e}"
return StreamingResponse(token_stream(), media_type="text/plain")
@app.post("/voice/transcribe")
async def transcribe_voice(
audio: UploadFile = File(...),
language: str = Query("en-US", description="Language code for speech recognition")
):
"""Convert speech to text."""
try:
audio_data = await audio.read()
if not audio.filename.lower().endswith(('.wav', '.mp3', '.ogg', '.flac')):
raise HTTPException(status_code=400, detail="Unsupported audio format")
text = recognize_speech(audio_data, language)
return {"text": text}
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in voice transcription: {e}")
raise HTTPException(status_code=500, detail="Error processing voice input")
@app.post("/voice/synthesize")
async def synthesize_voice(request: VoiceOutputRequest):
"""Convert text to speech."""
try:
audio_data = text_to_speech(request.text, request.language, request.slow)
if request.return_format == "base64":
return {"audio": base64.b64encode(audio_data).decode('utf-8')}
else:
return StreamingResponse(
io.BytesIO(audio_data),
media_type="audio/mpeg",
headers={"Content-Disposition": "attachment; filename=speech.mp3"}
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in voice synthesis: {e}")
raise HTTPException(status_code=500, detail="Error generating voice output")
@app.post("/voice/chat")
async def voice_chat_endpoint(
audio: UploadFile = File(...),
language: str = Query("en-US", description="Language code for speech recognition"),
temperature: float = Query(0.7, ge=0.1, le=1.0),
max_new_tokens: int = Query(512, ge=50, le=1024)
):
"""Complete voice chat interaction (speech-to-text -> AI -> text-to-speech)."""
try:
audio_data = await audio.read()
user_message = recognize_speech(audio_data, language)
chat_response = agent.chat(
message=user_message,
history=[],
temperature=temperature,
max_new_tokens=max_new_tokens
)
audio_data = text_to_speech(chat_response, language.split('-')[0])
return StreamingResponse(
io.BytesIO(audio_data),
media_type="audio/mpeg",
headers={"Content-Disposition": "attachment; filename=response.mp3"}
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in voice chat: {e}")
raise HTTPException(status_code=500, detail="Error processing voice chat")
@app.post("/analyze-report")
async def analyze_clinical_report(
file: UploadFile = File(...),
patient_id: Optional[str] = Form(None),
temperature: float = Form(0.5),
max_new_tokens: int = Form(1024)
):
"""
Analyze a clinical patient report from an uploaded file.
Parameters:
- file: Uploaded clinical report file (PDF, TXT, DOCX)
- patient_id: Optional patient ID to associate with this report
- temperature: Controls randomness of response (0.1-1.0)
- max_new_tokens: Maximum length of response
Returns structured analysis of the patient report.
"""
try:
# Validate file type
content_type = file.content_type
allowed_types = [
'application/pdf',
'text/plain',
'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
]
if content_type not in allowed_types:
raise HTTPException(
status_code=400,
detail=f"Unsupported file type: {content_type}. Supported types: PDF, TXT, DOCX"
)
# Read file content
file_content = await file.read()
# Extract text based on file type
if content_type == 'application/pdf':
text = extract_text_from_pdf(file_content)
elif content_type == 'text/plain':
text = file_content.decode('utf-8')
elif content_type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
doc = Document(io.BytesIO(file_content))
text = "\n".join([para.text for para in doc.paragraphs])
# Clean and validate text
text = clean_text_response(text)
if len(text.strip()) < 50:
raise HTTPException(
status_code=400,
detail="Extracted text is too short (minimum 50 characters required)"
)
# Analyze the report
analysis = await analyze_patient_report(
patient_id=patient_id,
report_content=text,
file_type=content_type,
file_content=file_content
)
# ✅ Use jsonable_encoder to serialize datetime/ObjectId
return JSONResponse(content=jsonable_encoder({
"status": "success",
"analysis": analysis,
"patient_id": patient_id,
"file_type": content_type,
"file_size": len(file_content)
}))
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in report analysis: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Failed to analyze report: {str(e)}"
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |