Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,15 @@
|
|
1 |
-
import sys
|
2 |
import os
|
|
|
3 |
import json
|
4 |
import shutil
|
5 |
-
import re
|
6 |
-
import gc
|
7 |
-
import time
|
8 |
-
from datetime import datetime
|
9 |
-
from typing import List, Tuple, Dict, Union, Optional
|
10 |
from fastapi import FastAPI, UploadFile, File, HTTPException
|
11 |
-
from fastapi.responses import
|
12 |
from fastapi.middleware.cors import CORSMiddleware
|
13 |
-
import
|
14 |
-
import pdfplumber
|
15 |
import torch
|
16 |
-
|
17 |
-
from fpdf import FPDF
|
18 |
-
import unicodedata
|
19 |
-
import uvicorn
|
20 |
|
21 |
-
#
|
22 |
persistent_dir = "/data/hf_cache"
|
23 |
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
24 |
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
@@ -26,34 +17,24 @@ file_cache_dir = os.path.join(persistent_dir, "cache")
|
|
26 |
report_dir = os.path.join(persistent_dir, "reports")
|
27 |
|
28 |
# Create directories if they don't exist
|
29 |
-
|
30 |
-
|
|
|
|
|
31 |
|
32 |
# Set environment variables
|
33 |
os.environ["HF_HOME"] = model_cache_dir
|
34 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
35 |
-
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib" # Fix for matplotlib permission issues
|
36 |
|
37 |
# Set up Python path
|
38 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
39 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
40 |
sys.path.insert(0, src_path)
|
41 |
|
42 |
-
# Import TxAgent after setting up paths
|
43 |
-
from txagent.txagent import TxAgent
|
44 |
-
|
45 |
-
# Constants
|
46 |
-
MAX_MODEL_TOKENS = 131072
|
47 |
-
MAX_NEW_TOKENS = 4096
|
48 |
-
MAX_CHUNK_TOKENS = 8192
|
49 |
-
BATCH_SIZE = 1
|
50 |
-
PROMPT_OVERHEAD = 300
|
51 |
-
SAFE_SLEEP = 0.5
|
52 |
-
|
53 |
# Initialize FastAPI app
|
54 |
app = FastAPI(
|
55 |
title="Clinical Patient Support System API",
|
56 |
-
description="API for analyzing
|
57 |
version="1.0.0"
|
58 |
)
|
59 |
|
@@ -77,12 +58,13 @@ async def startup_event():
|
|
77 |
except Exception as e:
|
78 |
raise RuntimeError(f"Failed to initialize agent: {str(e)}")
|
79 |
|
80 |
-
def init_agent()
|
81 |
"""Initialize and return the TxAgent instance."""
|
82 |
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
83 |
if not os.path.exists(tool_path):
|
84 |
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
|
85 |
|
|
|
86 |
agent = TxAgent(
|
87 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
88 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
@@ -90,132 +72,46 @@ def init_agent() -> TxAgent:
|
|
90 |
force_finish=True,
|
91 |
enable_checker=True,
|
92 |
step_rag_num=4,
|
93 |
-
seed=100
|
|
|
94 |
)
|
95 |
agent.init_model()
|
96 |
return agent
|
97 |
|
98 |
-
# Utility functions (keep your existing functions but add error handling)
|
99 |
-
def estimate_tokens(text: str) -> int:
|
100 |
-
"""Estimate the number of tokens in the given text."""
|
101 |
-
return len(text) // 4 + 1
|
102 |
-
|
103 |
-
def clean_response(text: str) -> str:
|
104 |
-
"""Clean and format the response text."""
|
105 |
-
if not text:
|
106 |
-
return ""
|
107 |
-
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
108 |
-
text = re.sub(r"\n{3,}", "\n\n", text)
|
109 |
-
return text.strip()
|
110 |
-
|
111 |
-
def extract_text_from_excel(path: str) -> str:
|
112 |
-
"""Extract text from Excel file."""
|
113 |
-
try:
|
114 |
-
all_text = []
|
115 |
-
xls = pd.ExcelFile(path)
|
116 |
-
for sheet_name in xls.sheet_names:
|
117 |
-
try:
|
118 |
-
df = xls.parse(sheet_name).astype(str).fillna("")
|
119 |
-
except Exception:
|
120 |
-
continue
|
121 |
-
for _, row in df.iterrows():
|
122 |
-
non_empty = [cell.strip() for cell in row if cell.strip()]
|
123 |
-
if len(non_empty) >= 2:
|
124 |
-
text_line = " | ".join(non_empty)
|
125 |
-
if len(text_line) > 15:
|
126 |
-
all_text.append(f"[{sheet_name}] {text_line}")
|
127 |
-
return "\n".join(all_text)
|
128 |
-
except Exception as e:
|
129 |
-
raise RuntimeError(f"Failed to extract text from Excel: {str(e)}")
|
130 |
-
|
131 |
-
def extract_text(file_path: str) -> str:
|
132 |
-
"""Extract text from supported file types."""
|
133 |
-
try:
|
134 |
-
if file_path.endswith(".xlsx"):
|
135 |
-
return extract_text_from_excel(file_path)
|
136 |
-
elif file_path.endswith(".csv"):
|
137 |
-
df = pd.read_csv(file_path).astype(str).fillna("")
|
138 |
-
return "\n".join(
|
139 |
-
" | ".join(cell.strip() for cell in row if cell.strip())
|
140 |
-
for _, row in df.iterrows()
|
141 |
-
if len([cell for cell in row if cell.strip()]) >= 2
|
142 |
-
)
|
143 |
-
elif file_path.endswith(".pdf"):
|
144 |
-
with pdfplumber.open(file_path) as pdf:
|
145 |
-
return "\n".join(page.extract_text() or "" for page in pdf.pages)
|
146 |
-
else:
|
147 |
-
return ""
|
148 |
-
except Exception as e:
|
149 |
-
raise RuntimeError(f"Failed to extract text from file: {str(e)}")
|
150 |
-
|
151 |
-
# API endpoints
|
152 |
@app.post("/analyze")
|
153 |
async def analyze_document(file: UploadFile = File(...)):
|
154 |
"""Analyze a medical document and return results."""
|
155 |
-
start_time = time.time()
|
156 |
-
|
157 |
try:
|
158 |
# Save the uploaded file temporarily
|
159 |
temp_path = os.path.join(file_cache_dir, file.filename)
|
160 |
with open(temp_path, "wb") as f:
|
161 |
f.write(await file.read())
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
raise HTTPException(status_code=400, detail="Could not extract text from the file")
|
166 |
-
|
167 |
-
chunks = split_text(extracted)
|
168 |
-
batches = batch_chunks(chunks, batch_size=BATCH_SIZE)
|
169 |
-
batch_results = analyze_batches(agent, batches)
|
170 |
|
171 |
-
|
172 |
-
if not valid_results:
|
173 |
-
raise HTTPException(status_code=400, detail="No valid analysis results were generated")
|
174 |
-
|
175 |
-
final_summary = generate_final_summary(agent, "\n\n".join(valid_results))
|
176 |
-
|
177 |
-
# Generate report files
|
178 |
-
report_filename = f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
179 |
-
report_path = os.path.join(report_dir, f"{report_filename}.md")
|
180 |
-
with open(report_path, 'w', encoding='utf-8') as f:
|
181 |
-
f.write(f"# Final Medical Report\n\n{final_summary}")
|
182 |
-
|
183 |
-
pdf_path = generate_pdf_report_with_charts(final_summary, report_path, detailed_batches=batch_results)
|
184 |
-
|
185 |
-
# Clean up temp file
|
186 |
os.remove(temp_path)
|
187 |
|
188 |
return JSONResponse({
|
189 |
"status": "success",
|
190 |
-
"
|
191 |
-
"
|
192 |
-
"processing_time": f"{time.time() - start_time:.2f} seconds",
|
193 |
-
"detailed_outputs": batch_results
|
194 |
})
|
195 |
|
196 |
-
except HTTPException:
|
197 |
-
raise
|
198 |
except Exception as e:
|
199 |
raise HTTPException(status_code=500, detail=str(e))
|
200 |
|
201 |
-
@app.get("/reports/{filename}")
|
202 |
-
async def download_report(filename: str):
|
203 |
-
"""Download a generated report."""
|
204 |
-
file_path = os.path.join(report_dir, filename)
|
205 |
-
if not os.path.exists(file_path):
|
206 |
-
raise HTTPException(status_code=404, detail="Report not found")
|
207 |
-
return FileResponse(file_path, media_type='application/pdf', filename=filename)
|
208 |
-
|
209 |
@app.get("/status")
|
210 |
async def service_status():
|
211 |
"""Check service status."""
|
212 |
return {
|
213 |
"status": "running",
|
214 |
"version": "1.0.0",
|
215 |
-
"model":
|
216 |
-
"
|
217 |
-
"supported_file_types": [".pdf", ".xlsx", ".csv"]
|
218 |
}
|
219 |
|
220 |
if __name__ == "__main__":
|
|
|
221 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
1 |
import os
|
2 |
+
import sys
|
3 |
import json
|
4 |
import shutil
|
|
|
|
|
|
|
|
|
|
|
5 |
from fastapi import FastAPI, UploadFile, File, HTTPException
|
6 |
+
from fastapi.responses import JSONResponse, FileResponse
|
7 |
from fastapi.middleware.cors import CORSMiddleware
|
8 |
+
from typing import List, Dict, Optional
|
|
|
9 |
import torch
|
10 |
+
from datetime import datetime
|
|
|
|
|
|
|
11 |
|
12 |
+
# Configuration
|
13 |
persistent_dir = "/data/hf_cache"
|
14 |
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
15 |
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
|
|
17 |
report_dir = os.path.join(persistent_dir, "reports")
|
18 |
|
19 |
# Create directories if they don't exist
|
20 |
+
os.makedirs(model_cache_dir, exist_ok=True)
|
21 |
+
os.makedirs(tool_cache_dir, exist_ok=True)
|
22 |
+
os.makedirs(file_cache_dir, exist_ok=True)
|
23 |
+
os.makedirs(report_dir, exist_ok=True)
|
24 |
|
25 |
# Set environment variables
|
26 |
os.environ["HF_HOME"] = model_cache_dir
|
27 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
|
|
28 |
|
29 |
# Set up Python path
|
30 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
31 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
32 |
sys.path.insert(0, src_path)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Initialize FastAPI app
|
35 |
app = FastAPI(
|
36 |
title="Clinical Patient Support System API",
|
37 |
+
description="API for analyzing medical documents",
|
38 |
version="1.0.0"
|
39 |
)
|
40 |
|
|
|
58 |
except Exception as e:
|
59 |
raise RuntimeError(f"Failed to initialize agent: {str(e)}")
|
60 |
|
61 |
+
def init_agent():
|
62 |
"""Initialize and return the TxAgent instance."""
|
63 |
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
64 |
if not os.path.exists(tool_path):
|
65 |
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
|
66 |
|
67 |
+
from txagent.txagent import TxAgent
|
68 |
agent = TxAgent(
|
69 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
70 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
|
|
72 |
force_finish=True,
|
73 |
enable_checker=True,
|
74 |
step_rag_num=4,
|
75 |
+
seed=100,
|
76 |
+
use_vllm=False # Disable vLLM for Hugging Face Spaces
|
77 |
)
|
78 |
agent.init_model()
|
79 |
return agent
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
@app.post("/analyze")
|
82 |
async def analyze_document(file: UploadFile = File(...)):
|
83 |
"""Analyze a medical document and return results."""
|
|
|
|
|
84 |
try:
|
85 |
# Save the uploaded file temporarily
|
86 |
temp_path = os.path.join(file_cache_dir, file.filename)
|
87 |
with open(temp_path, "wb") as f:
|
88 |
f.write(await file.read())
|
89 |
|
90 |
+
# Process the file and generate response
|
91 |
+
result = agent.process_document(temp_path)
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
# Clean up
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
os.remove(temp_path)
|
95 |
|
96 |
return JSONResponse({
|
97 |
"status": "success",
|
98 |
+
"result": result,
|
99 |
+
"timestamp": datetime.now().isoformat()
|
|
|
|
|
100 |
})
|
101 |
|
|
|
|
|
102 |
except Exception as e:
|
103 |
raise HTTPException(status_code=500, detail=str(e))
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
@app.get("/status")
|
106 |
async def service_status():
|
107 |
"""Check service status."""
|
108 |
return {
|
109 |
"status": "running",
|
110 |
"version": "1.0.0",
|
111 |
+
"model": agent.model_name if agent else "not loaded",
|
112 |
+
"device": str(agent.device) if agent else "unknown"
|
|
|
113 |
}
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
+
import uvicorn
|
117 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|