Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,13 @@ import sys
|
|
3 |
import json
|
4 |
import logging
|
5 |
import re
|
|
|
6 |
from datetime import datetime
|
7 |
from typing import List, Dict, Optional, Tuple
|
8 |
from enum import Enum
|
9 |
|
10 |
from fastapi import FastAPI, HTTPException
|
11 |
-
from
|
12 |
from fastapi.middleware.cors import CORSMiddleware
|
13 |
from pydantic import BaseModel
|
14 |
import asyncio
|
@@ -22,7 +23,7 @@ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(
|
|
22 |
logger = logging.getLogger("TxAgentAPI")
|
23 |
|
24 |
# App
|
25 |
-
app = FastAPI(title="TxAgent API", version="2.2.
|
26 |
|
27 |
app.add_middleware(
|
28 |
CORSMiddleware,
|
@@ -169,13 +170,26 @@ def serialize_patient(patient: dict) -> dict:
|
|
169 |
patient_copy["_id"] = str(patient_copy["_id"])
|
170 |
return patient_copy
|
171 |
|
|
|
|
|
|
|
|
|
|
|
172 |
async def analyze_patient(patient: dict):
|
173 |
try:
|
174 |
serialized = serialize_patient(patient)
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
# Main clinical analysis
|
|
|
179 |
message = (
|
180 |
"You are a clinical decision support AI.\n\n"
|
181 |
"Given the patient document below:\n"
|
@@ -197,26 +211,27 @@ async def analyze_patient(patient: dict):
|
|
197 |
"factors": risk_factors
|
198 |
}
|
199 |
|
200 |
-
# Store analysis
|
201 |
analysis_doc = {
|
202 |
-
"patient_id":
|
203 |
"timestamp": datetime.utcnow(),
|
204 |
"summary": structured,
|
205 |
"suicide_risk": suicide_risk,
|
206 |
-
"raw": raw
|
|
|
207 |
}
|
208 |
|
209 |
await analysis_collection.update_one(
|
210 |
-
{"patient_id":
|
211 |
{"$set": analysis_doc},
|
212 |
upsert=True
|
213 |
)
|
214 |
|
215 |
# Create alert if risk is above threshold
|
216 |
if risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]:
|
217 |
-
await create_alert(
|
218 |
|
219 |
-
logger.info(f"✅ Stored analysis for patient {
|
220 |
|
221 |
except Exception as e:
|
222 |
logger.error(f"Error analyzing patient: {e}")
|
@@ -250,7 +265,7 @@ async def startup_event():
|
|
250 |
db = get_mongo_client()["cps_db"]
|
251 |
patients_collection = db["patients"]
|
252 |
analysis_collection = db["patient_analysis_results"]
|
253 |
-
alerts_collection = db["clinical_alerts"]
|
254 |
logger.info("📡 Connected to MongoDB")
|
255 |
|
256 |
asyncio.create_task(analyze_all_patients())
|
@@ -260,7 +275,7 @@ async def status():
|
|
260 |
return {
|
261 |
"status": "running",
|
262 |
"timestamp": datetime.utcnow().isoformat(),
|
263 |
-
"version": "2.2.
|
264 |
}
|
265 |
|
266 |
@app.get("/patients/analysis-results")
|
@@ -295,8 +310,6 @@ async def get_patient_analysis_results(name: Optional[str] = Query(None)):
|
|
295 |
logger.error(f"Error fetching analysis results: {e}")
|
296 |
raise HTTPException(status_code=500, detail="Failed to retrieve analysis results")
|
297 |
|
298 |
-
|
299 |
-
|
300 |
@app.post("/chat-stream")
|
301 |
async def chat_stream_endpoint(request: ChatRequest):
|
302 |
async def token_stream():
|
|
|
3 |
import json
|
4 |
import logging
|
5 |
import re
|
6 |
+
import hashlib
|
7 |
from datetime import datetime
|
8 |
from typing import List, Dict, Optional, Tuple
|
9 |
from enum import Enum
|
10 |
|
11 |
from fastapi import FastAPI, HTTPException
|
12 |
+
from,快api.responses import StreamingResponse
|
13 |
from fastapi.middleware.cors import CORSMiddleware
|
14 |
from pydantic import BaseModel
|
15 |
import asyncio
|
|
|
23 |
logger = logging.getLogger("TxAgentAPI")
|
24 |
|
25 |
# App
|
26 |
+
app = FastAPI(title="TxAgent API", version="2.2.1") # Version bump for hash-based analysis
|
27 |
|
28 |
app.add_middleware(
|
29 |
CORSMiddleware,
|
|
|
170 |
patient_copy["_id"] = str(patient_copy["_id"])
|
171 |
return patient_copy
|
172 |
|
173 |
+
def compute_patient_data_hash(patient: dict) -> str:
|
174 |
+
"""Compute SHA-256 hash of patient data."""
|
175 |
+
serialized = json.dumps(patient, sort_keys=True) # Sort keys for consistent hashing
|
176 |
+
return hashlib.sha256(serialized.encode()).hexdigest()
|
177 |
+
|
178 |
async def analyze_patient(patient: dict):
|
179 |
try:
|
180 |
serialized = serialize_patient(patient)
|
181 |
+
patient_id = serialized.get("fhir_id")
|
182 |
+
patient_hash = compute_patient_data_hash(serialized)
|
183 |
+
logger.info(f"🧾 Analyzing patient: {patient_id}")
|
184 |
+
|
185 |
+
# Check if analysis exists and hash matches
|
186 |
+
existing_analysis = await analysis_collection.find_one({"patient_id": patient_id})
|
187 |
+
if existing_analysis and existing_analysis.get("data_hash") == patient_hash:
|
188 |
+
logger.info(f"✅ No changes in patient data for {patient_id}, skipping analysis")
|
189 |
+
return # Skip analysis if data hasn't changed
|
190 |
|
191 |
# Main clinical analysis
|
192 |
+
doc = json.dumps(serialized, indent=2)
|
193 |
message = (
|
194 |
"You are a clinical decision support AI.\n\n"
|
195 |
"Given the patient document below:\n"
|
|
|
211 |
"factors": risk_factors
|
212 |
}
|
213 |
|
214 |
+
# Store analysis with data hash
|
215 |
analysis_doc = {
|
216 |
+
"patient_id": patient_id,
|
217 |
"timestamp": datetime.utcnow(),
|
218 |
"summary": structured,
|
219 |
"suicide_risk": suicide_risk,
|
220 |
+
"raw": raw,
|
221 |
+
"data_hash": patient_hash # Store the hash
|
222 |
}
|
223 |
|
224 |
await analysis_collection.update_one(
|
225 |
+
{"patient_id": patient_id},
|
226 |
{"$set": analysis_doc},
|
227 |
upsert=True
|
228 |
)
|
229 |
|
230 |
# Create alert if risk is above threshold
|
231 |
if risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]:
|
232 |
+
await create_alert(patient_id, suicide_risk)
|
233 |
|
234 |
+
logger.info(f"✅ Stored analysis for patient {patient_id}")
|
235 |
|
236 |
except Exception as e:
|
237 |
logger.error(f"Error analyzing patient: {e}")
|
|
|
265 |
db = get_mongo_client()["cps_db"]
|
266 |
patients_collection = db["patients"]
|
267 |
analysis_collection = db["patient_analysis_results"]
|
268 |
+
alerts_collection = db["clinical_alerts"]
|
269 |
logger.info("📡 Connected to MongoDB")
|
270 |
|
271 |
asyncio.create_task(analyze_all_patients())
|
|
|
275 |
return {
|
276 |
"status": "running",
|
277 |
"timestamp": datetime.utcnow().isoformat(),
|
278 |
+
"version": "2.2.1"
|
279 |
}
|
280 |
|
281 |
@app.get("/patients/analysis-results")
|
|
|
310 |
logger.error(f"Error fetching analysis results: {e}")
|
311 |
raise HTTPException(status_code=500, detail="Failed to retrieve analysis results")
|
312 |
|
|
|
|
|
313 |
@app.post("/chat-stream")
|
314 |
async def chat_stream_endpoint(request: ChatRequest):
|
315 |
async def token_stream():
|