Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,8 @@ import json
|
|
4 |
import logging
|
5 |
import re
|
6 |
from datetime import datetime
|
7 |
-
from typing import List, Dict, Optional
|
|
|
8 |
|
9 |
from fastapi import FastAPI, HTTPException
|
10 |
from fastapi.responses import StreamingResponse
|
@@ -20,7 +21,7 @@ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(
|
|
20 |
logger = logging.getLogger("TxAgentAPI")
|
21 |
|
22 |
# App
|
23 |
-
app = FastAPI(title="TxAgent API", version="2.
|
24 |
|
25 |
app.add_middleware(
|
26 |
CORSMiddleware,
|
@@ -36,10 +37,19 @@ class ChatRequest(BaseModel):
|
|
36 |
history: Optional[List[Dict]] = None
|
37 |
format: Optional[str] = "clean"
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# Globals
|
40 |
agent = None
|
41 |
patients_collection = None
|
42 |
analysis_collection = None
|
|
|
43 |
|
44 |
# Helpers
|
45 |
def clean_text_response(text: str) -> str:
|
@@ -59,25 +69,21 @@ def extract_section(text: str, heading: str) -> str:
|
|
59 |
def structure_medical_response(text: str) -> Dict:
|
60 |
"""Improved version that handles both markdown and plain text formats"""
|
61 |
def extract_improved(text: str, heading: str) -> str:
|
62 |
-
# Try multiple patterns to match different heading formats
|
63 |
patterns = [
|
64 |
-
rf"{re.escape(heading)}:\s*\n(.*?)(?=\n\s*\n|\Z)",
|
65 |
-
rf"\*\*{re.escape(heading)}\*\*:\s*\n(.*?)(?=\n\s*\n|\Z)",
|
66 |
-
rf"{re.escape(heading)}[\s\-]+(.*?)(?=\n\s*\n|\Z)",
|
67 |
-
rf"\n{re.escape(heading)}\s*\n(.*?)(?=\n\s*\n|\Z)"
|
68 |
]
|
69 |
|
70 |
for pattern in patterns:
|
71 |
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
|
72 |
if match:
|
73 |
content = match.group(1).strip()
|
74 |
-
# Clean up any remaining markdown or special characters
|
75 |
content = re.sub(r'^\s*[\-\*]\s*', '', content, flags=re.MULTILINE)
|
76 |
return content
|
77 |
-
|
78 |
return ""
|
79 |
|
80 |
-
# Normalize the text first
|
81 |
text = text.replace('**', '').replace('__', '')
|
82 |
|
83 |
return {
|
@@ -90,6 +96,72 @@ def structure_medical_response(text: str) -> Dict:
|
|
90 |
"recommendations": extract_improved(text, "Suggest Next Clinical Steps") or
|
91 |
extract_improved(text, "Suggested Clinical Actions")
|
92 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
def serialize_patient(patient: dict) -> dict:
|
94 |
patient_copy = patient.copy()
|
95 |
if "_id" in patient_copy:
|
@@ -101,13 +173,13 @@ async def analyze_patient(patient: dict):
|
|
101 |
serialized = serialize_patient(patient)
|
102 |
doc = json.dumps(serialized, indent=2)
|
103 |
logger.info(f"🧾 Analyzing patient: {serialized.get('fhir_id')}")
|
104 |
-
logger.debug(f"🧠 Data passed to TxAgent:\n{doc[:1000]}")
|
105 |
|
|
|
106 |
message = (
|
107 |
"You are a clinical decision support AI.\n\n"
|
108 |
"Given the patient document below:\n"
|
109 |
"1. Summarize the patient's medical history.\n"
|
110 |
-
"2. Identify risks or red flags.\n"
|
111 |
"3. Highlight missed diagnoses or treatments.\n"
|
112 |
"4. Suggest next clinical steps.\n"
|
113 |
f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}"
|
@@ -115,19 +187,36 @@ async def analyze_patient(patient: dict):
|
|
115 |
|
116 |
raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024)
|
117 |
structured = structure_medical_response(raw)
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
analysis_doc = {
|
120 |
"patient_id": serialized.get("fhir_id"),
|
121 |
"timestamp": datetime.utcnow(),
|
122 |
"summary": structured,
|
|
|
123 |
"raw": raw
|
124 |
}
|
|
|
125 |
await analysis_collection.update_one(
|
126 |
{"patient_id": serialized.get("fhir_id")},
|
127 |
{"$set": analysis_doc},
|
128 |
upsert=True
|
129 |
)
|
|
|
|
|
|
|
|
|
|
|
130 |
logger.info(f"✅ Stored analysis for patient {serialized.get('fhir_id')}")
|
|
|
131 |
except Exception as e:
|
132 |
logger.error(f"Error analyzing patient: {e}")
|
133 |
|
@@ -139,7 +228,7 @@ async def analyze_all_patients():
|
|
139 |
|
140 |
@app.on_event("startup")
|
141 |
async def startup_event():
|
142 |
-
global agent, patients_collection, analysis_collection
|
143 |
|
144 |
agent = TxAgent(
|
145 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
@@ -160,6 +249,7 @@ async def startup_event():
|
|
160 |
db = get_mongo_client()["cps_db"]
|
161 |
patients_collection = db["patients"]
|
162 |
analysis_collection = db["patient_analysis_results"]
|
|
|
163 |
logger.info("📡 Connected to MongoDB")
|
164 |
|
165 |
asyncio.create_task(analyze_all_patients())
|
@@ -168,7 +258,8 @@ async def startup_event():
|
|
168 |
async def status():
|
169 |
return {
|
170 |
"status": "running",
|
171 |
-
"timestamp": datetime.utcnow().isoformat()
|
|
|
172 |
}
|
173 |
|
174 |
@app.post("/chat-stream")
|
@@ -201,4 +292,4 @@ async def chat_stream_endpoint(request: ChatRequest):
|
|
201 |
logger.error(f"Streaming error: {e}")
|
202 |
yield f"⚠️ Error: {e}"
|
203 |
|
204 |
-
return StreamingResponse(token_stream(), media_type="text/plain")
|
|
|
4 |
import logging
|
5 |
import re
|
6 |
from datetime import datetime
|
7 |
+
from typing import List, Dict, Optional, Tuple
|
8 |
+
from enum import Enum
|
9 |
|
10 |
from fastapi import FastAPI, HTTPException
|
11 |
from fastapi.responses import StreamingResponse
|
|
|
21 |
logger = logging.getLogger("TxAgentAPI")
|
22 |
|
23 |
# App
|
24 |
+
app = FastAPI(title="TxAgent API", version="2.2.0") # Version bump for new features
|
25 |
|
26 |
app.add_middleware(
|
27 |
CORSMiddleware,
|
|
|
37 |
history: Optional[List[Dict]] = None
|
38 |
format: Optional[str] = "clean"
|
39 |
|
40 |
+
# Enums
|
41 |
+
class RiskLevel(str, Enum):
|
42 |
+
NONE = "none"
|
43 |
+
LOW = "low"
|
44 |
+
MODERATE = "moderate"
|
45 |
+
HIGH = "high"
|
46 |
+
SEVERE = "severe"
|
47 |
+
|
48 |
# Globals
|
49 |
agent = None
|
50 |
patients_collection = None
|
51 |
analysis_collection = None
|
52 |
+
alerts_collection = None
|
53 |
|
54 |
# Helpers
|
55 |
def clean_text_response(text: str) -> str:
|
|
|
69 |
def structure_medical_response(text: str) -> Dict:
|
70 |
"""Improved version that handles both markdown and plain text formats"""
|
71 |
def extract_improved(text: str, heading: str) -> str:
|
|
|
72 |
patterns = [
|
73 |
+
rf"{re.escape(heading)}:\s*\n(.*?)(?=\n\s*\n|\Z)",
|
74 |
+
rf"\*\*{re.escape(heading)}\*\*:\s*\n(.*?)(?=\n\s*\n|\Z)",
|
75 |
+
rf"{re.escape(heading)}[\s\-]+(.*?)(?=\n\s*\n|\Z)",
|
76 |
+
rf"\n{re.escape(heading)}\s*\n(.*?)(?=\n\s*\n|\Z)"
|
77 |
]
|
78 |
|
79 |
for pattern in patterns:
|
80 |
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
|
81 |
if match:
|
82 |
content = match.group(1).strip()
|
|
|
83 |
content = re.sub(r'^\s*[\-\*]\s*', '', content, flags=re.MULTILINE)
|
84 |
return content
|
|
|
85 |
return ""
|
86 |
|
|
|
87 |
text = text.replace('**', '').replace('__', '')
|
88 |
|
89 |
return {
|
|
|
96 |
"recommendations": extract_improved(text, "Suggest Next Clinical Steps") or
|
97 |
extract_improved(text, "Suggested Clinical Actions")
|
98 |
}
|
99 |
+
|
100 |
+
def detect_suicide_risk(text: str) -> Tuple[RiskLevel, float, List[str]]:
|
101 |
+
"""Analyze text for suicide risk factors and return assessment"""
|
102 |
+
suicide_keywords = [
|
103 |
+
'suicide', 'suicidal', 'kill myself', 'end my life',
|
104 |
+
'want to die', 'self-harm', 'self harm', 'hopeless',
|
105 |
+
'no reason to live', 'plan to die'
|
106 |
+
]
|
107 |
+
|
108 |
+
# Check for explicit mentions
|
109 |
+
explicit_mentions = [kw for kw in suicide_keywords if kw in text.lower()]
|
110 |
+
|
111 |
+
if not explicit_mentions:
|
112 |
+
return RiskLevel.NONE, 0.0, []
|
113 |
+
|
114 |
+
# If found, ask AI for detailed assessment
|
115 |
+
assessment_prompt = (
|
116 |
+
"Assess the suicide risk level based on this text. "
|
117 |
+
"Consider frequency, specificity, and severity of statements. "
|
118 |
+
"Respond with JSON format: {\"risk_level\": \"low/moderate/high/severe\", "
|
119 |
+
"\"risk_score\": 0-1, \"factors\": [\"list of risk factors\"]}\n\n"
|
120 |
+
f"Text to assess:\n{text}"
|
121 |
+
)
|
122 |
+
|
123 |
+
try:
|
124 |
+
response = agent.chat(
|
125 |
+
message=assessment_prompt,
|
126 |
+
history=[],
|
127 |
+
temperature=0.2, # Lower temp for more deterministic responses
|
128 |
+
max_new_tokens=256
|
129 |
+
)
|
130 |
+
|
131 |
+
# Extract JSON from response
|
132 |
+
json_match = re.search(r'\{.*\}', response, re.DOTALL)
|
133 |
+
if json_match:
|
134 |
+
assessment = json.loads(json_match.group())
|
135 |
+
return (
|
136 |
+
RiskLevel(assessment.get("risk_level", "none").lower()),
|
137 |
+
float(assessment.get("risk_score", 0)),
|
138 |
+
assessment.get("factors", [])
|
139 |
+
)
|
140 |
+
except Exception as e:
|
141 |
+
logger.error(f"Error in suicide risk assessment: {e}")
|
142 |
+
|
143 |
+
# Fallback if JSON parsing fails
|
144 |
+
risk_score = min(0.1 * len(explicit_mentions), 0.9) # Cap at 0.9 for fallback
|
145 |
+
if risk_score > 0.7:
|
146 |
+
return RiskLevel.HIGH, risk_score, explicit_mentions
|
147 |
+
elif risk_score > 0.4:
|
148 |
+
return RiskLevel.MODERATE, risk_score, explicit_mentions
|
149 |
+
return RiskLevel.LOW, risk_score, explicit_mentions
|
150 |
+
|
151 |
+
async def create_alert(patient_id: str, risk_data: dict):
|
152 |
+
"""Create an alert document in the database"""
|
153 |
+
alert_doc = {
|
154 |
+
"patient_id": patient_id,
|
155 |
+
"type": "suicide_risk",
|
156 |
+
"level": risk_data["level"],
|
157 |
+
"score": risk_data["score"],
|
158 |
+
"factors": risk_data["factors"],
|
159 |
+
"timestamp": datetime.utcnow(),
|
160 |
+
"acknowledged": False
|
161 |
+
}
|
162 |
+
await alerts_collection.insert_one(alert_doc)
|
163 |
+
logger.warning(f"⚠️ Created suicide risk alert for patient {patient_id}")
|
164 |
+
|
165 |
def serialize_patient(patient: dict) -> dict:
|
166 |
patient_copy = patient.copy()
|
167 |
if "_id" in patient_copy:
|
|
|
173 |
serialized = serialize_patient(patient)
|
174 |
doc = json.dumps(serialized, indent=2)
|
175 |
logger.info(f"🧾 Analyzing patient: {serialized.get('fhir_id')}")
|
|
|
176 |
|
177 |
+
# Main clinical analysis
|
178 |
message = (
|
179 |
"You are a clinical decision support AI.\n\n"
|
180 |
"Given the patient document below:\n"
|
181 |
"1. Summarize the patient's medical history.\n"
|
182 |
+
"2. Identify risks or red flags (including mental health and suicide risk).\n"
|
183 |
"3. Highlight missed diagnoses or treatments.\n"
|
184 |
"4. Suggest next clinical steps.\n"
|
185 |
f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}"
|
|
|
187 |
|
188 |
raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024)
|
189 |
structured = structure_medical_response(raw)
|
190 |
+
|
191 |
+
# Suicide risk assessment
|
192 |
+
risk_level, risk_score, risk_factors = detect_suicide_risk(raw)
|
193 |
+
suicide_risk = {
|
194 |
+
"level": risk_level.value,
|
195 |
+
"score": risk_score,
|
196 |
+
"factors": risk_factors
|
197 |
+
}
|
198 |
+
|
199 |
+
# Store analysis
|
200 |
analysis_doc = {
|
201 |
"patient_id": serialized.get("fhir_id"),
|
202 |
"timestamp": datetime.utcnow(),
|
203 |
"summary": structured,
|
204 |
+
"suicide_risk": suicide_risk,
|
205 |
"raw": raw
|
206 |
}
|
207 |
+
|
208 |
await analysis_collection.update_one(
|
209 |
{"patient_id": serialized.get("fhir_id")},
|
210 |
{"$set": analysis_doc},
|
211 |
upsert=True
|
212 |
)
|
213 |
+
|
214 |
+
# Create alert if risk is above threshold
|
215 |
+
if risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]:
|
216 |
+
await create_alert(serialized.get("fhir_id"), suicide_risk)
|
217 |
+
|
218 |
logger.info(f"✅ Stored analysis for patient {serialized.get('fhir_id')}")
|
219 |
+
|
220 |
except Exception as e:
|
221 |
logger.error(f"Error analyzing patient: {e}")
|
222 |
|
|
|
228 |
|
229 |
@app.on_event("startup")
|
230 |
async def startup_event():
|
231 |
+
global agent, patients_collection, analysis_collection, alerts_collection
|
232 |
|
233 |
agent = TxAgent(
|
234 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
|
|
249 |
db = get_mongo_client()["cps_db"]
|
250 |
patients_collection = db["patients"]
|
251 |
analysis_collection = db["patient_analysis_results"]
|
252 |
+
alerts_collection = db["clinical_alerts"] # New collection for alerts
|
253 |
logger.info("📡 Connected to MongoDB")
|
254 |
|
255 |
asyncio.create_task(analyze_all_patients())
|
|
|
258 |
async def status():
|
259 |
return {
|
260 |
"status": "running",
|
261 |
+
"timestamp": datetime.utcnow().isoformat(),
|
262 |
+
"version": "2.2.0"
|
263 |
}
|
264 |
|
265 |
@app.post("/chat-stream")
|
|
|
292 |
logger.error(f"Streaming error: {e}")
|
293 |
yield f"⚠️ Error: {e}"
|
294 |
|
295 |
+
return StreamingResponse(token_stream(), media_type="text/plain")
|