Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,15 @@
|
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
import json
|
4 |
import shutil
|
5 |
-
from fastapi import FastAPI, UploadFile, File
|
6 |
-
from fastapi.responses import JSONResponse
|
7 |
from fastapi.middleware.cors import CORSMiddleware
|
8 |
from typing import List, Dict, Optional
|
9 |
import torch
|
10 |
from datetime import datetime
|
|
|
11 |
|
12 |
# Configuration
|
13 |
persistent_dir = "/data/hf_cache"
|
@@ -31,10 +33,23 @@ current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
31 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
32 |
sys.path.insert(0, src_path)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Initialize FastAPI app
|
35 |
app = FastAPI(
|
36 |
-
title="
|
37 |
-
description="API for
|
38 |
version="1.0.0"
|
39 |
)
|
40 |
|
@@ -59,52 +74,98 @@ async def startup_event():
|
|
59 |
raise RuntimeError(f"Failed to initialize agent: {str(e)}")
|
60 |
|
61 |
def init_agent():
|
62 |
-
"""Initialize and return the TxAgent instance
|
63 |
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
64 |
if not os.path.exists(tool_path):
|
65 |
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
|
66 |
|
67 |
-
from txagent.txagent import TxAgent
|
68 |
agent = TxAgent(
|
69 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
70 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
71 |
tool_files_dict={"new_tool": tool_path},
|
|
|
|
|
72 |
force_finish=True,
|
73 |
enable_checker=True,
|
74 |
step_rag_num=4,
|
75 |
-
seed=100
|
76 |
-
use_vllm=False # Disable vLLM for Hugging Face Spaces
|
77 |
)
|
78 |
agent.init_model()
|
79 |
return agent
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
@app.post("/analyze")
|
82 |
async def analyze_document(file: UploadFile = File(...)):
|
83 |
-
"""Analyze a medical document
|
84 |
try:
|
85 |
# Save the uploaded file temporarily
|
86 |
temp_path = os.path.join(file_cache_dir, file.filename)
|
87 |
with open(temp_path, "wb") as f:
|
88 |
f.write(await file.read())
|
89 |
|
90 |
-
# Process the
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
# Clean up
|
94 |
os.remove(temp_path)
|
95 |
|
96 |
return JSONResponse({
|
97 |
"status": "success",
|
98 |
-
"
|
|
|
99 |
"timestamp": datetime.now().isoformat()
|
100 |
})
|
101 |
-
|
102 |
except Exception as e:
|
103 |
raise HTTPException(status_code=500, detail=str(e))
|
104 |
|
105 |
@app.get("/status")
|
106 |
async def service_status():
|
107 |
-
"""Check service status
|
108 |
return {
|
109 |
"status": "running",
|
110 |
"version": "1.0.0",
|
@@ -114,4 +175,4 @@ async def service_status():
|
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
import uvicorn
|
117 |
-
uvicorn.run(app, host="0.0.0.0", port=
|
|
|
1 |
+
# app.py - FastAPI application
|
2 |
import os
|
3 |
import sys
|
4 |
import json
|
5 |
import shutil
|
6 |
+
from fastapi import FastAPI, HTTPException, UploadFile, File
|
7 |
+
from fastapi.responses import JSONResponse
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
9 |
from typing import List, Dict, Optional
|
10 |
import torch
|
11 |
from datetime import datetime
|
12 |
+
from pydantic import BaseModel
|
13 |
|
14 |
# Configuration
|
15 |
persistent_dir = "/data/hf_cache"
|
|
|
33 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
34 |
sys.path.insert(0, src_path)
|
35 |
|
36 |
+
# Request models
|
37 |
+
class ChatRequest(BaseModel):
|
38 |
+
message: str
|
39 |
+
temperature: float = 0.7
|
40 |
+
max_new_tokens: int = 512
|
41 |
+
history: Optional[List[Dict]] = None
|
42 |
+
|
43 |
+
class MultistepRequest(BaseModel):
|
44 |
+
message: str
|
45 |
+
temperature: float = 0.7
|
46 |
+
max_new_tokens: int = 512
|
47 |
+
max_round: int = 5
|
48 |
+
|
49 |
# Initialize FastAPI app
|
50 |
app = FastAPI(
|
51 |
+
title="TxAgent API",
|
52 |
+
description="API for TxAgent medical document analysis",
|
53 |
version="1.0.0"
|
54 |
)
|
55 |
|
|
|
74 |
raise RuntimeError(f"Failed to initialize agent: {str(e)}")
|
75 |
|
76 |
def init_agent():
|
77 |
+
"""Initialize and return the TxAgent instance"""
|
78 |
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
79 |
if not os.path.exists(tool_path):
|
80 |
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
|
81 |
|
|
|
82 |
agent = TxAgent(
|
83 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
84 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
85 |
tool_files_dict={"new_tool": tool_path},
|
86 |
+
enable_finish=True,
|
87 |
+
enable_rag=False,
|
88 |
force_finish=True,
|
89 |
enable_checker=True,
|
90 |
step_rag_num=4,
|
91 |
+
seed=100
|
|
|
92 |
)
|
93 |
agent.init_model()
|
94 |
return agent
|
95 |
|
96 |
+
@app.post("/chat")
|
97 |
+
async def chat_endpoint(request: ChatRequest):
|
98 |
+
"""Handle chat conversations"""
|
99 |
+
try:
|
100 |
+
response = agent.chat(
|
101 |
+
message=request.message,
|
102 |
+
history=request.history,
|
103 |
+
temperature=request.temperature,
|
104 |
+
max_new_tokens=request.max_new_tokens
|
105 |
+
)
|
106 |
+
return JSONResponse({
|
107 |
+
"status": "success",
|
108 |
+
"response": response,
|
109 |
+
"timestamp": datetime.now().isoformat()
|
110 |
+
})
|
111 |
+
except Exception as e:
|
112 |
+
raise HTTPException(status_code=500, detail=str(e))
|
113 |
+
|
114 |
+
@app.post("/multistep")
|
115 |
+
async def multistep_endpoint(request: MultistepRequest):
|
116 |
+
"""Run multi-step reasoning"""
|
117 |
+
try:
|
118 |
+
response = agent.run_multistep_agent(
|
119 |
+
message=request.message,
|
120 |
+
temperature=request.temperature,
|
121 |
+
max_new_tokens=request.max_new_tokens,
|
122 |
+
max_round=request.max_round
|
123 |
+
)
|
124 |
+
return JSONResponse({
|
125 |
+
"status": "success",
|
126 |
+
"response": response,
|
127 |
+
"timestamp": datetime.now().isoformat()
|
128 |
+
})
|
129 |
+
except Exception as e:
|
130 |
+
raise HTTPException(status_code=500, detail=str(e))
|
131 |
+
|
132 |
@app.post("/analyze")
|
133 |
async def analyze_document(file: UploadFile = File(...)):
|
134 |
+
"""Analyze a medical document"""
|
135 |
try:
|
136 |
# Save the uploaded file temporarily
|
137 |
temp_path = os.path.join(file_cache_dir, file.filename)
|
138 |
with open(temp_path, "wb") as f:
|
139 |
f.write(await file.read())
|
140 |
|
141 |
+
# Process the document
|
142 |
+
text = agent.extract_text_from_file(temp_path)
|
143 |
+
analysis = agent.analyze_text(text)
|
144 |
+
|
145 |
+
# Generate report
|
146 |
+
report_path = os.path.join(report_dir, f"{file.filename}.json")
|
147 |
+
with open(report_path, "w") as f:
|
148 |
+
json.dump({
|
149 |
+
"filename": file.filename,
|
150 |
+
"analysis": analysis,
|
151 |
+
"timestamp": datetime.now().isoformat()
|
152 |
+
}, f)
|
153 |
|
154 |
# Clean up
|
155 |
os.remove(temp_path)
|
156 |
|
157 |
return JSONResponse({
|
158 |
"status": "success",
|
159 |
+
"analysis": analysis,
|
160 |
+
"report_path": report_path,
|
161 |
"timestamp": datetime.now().isoformat()
|
162 |
})
|
|
|
163 |
except Exception as e:
|
164 |
raise HTTPException(status_code=500, detail=str(e))
|
165 |
|
166 |
@app.get("/status")
|
167 |
async def service_status():
|
168 |
+
"""Check service status"""
|
169 |
return {
|
170 |
"status": "running",
|
171 |
"version": "1.0.0",
|
|
|
175 |
|
176 |
if __name__ == "__main__":
|
177 |
import uvicorn
|
178 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|