Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,42 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
import os
|
4 |
import sys
|
5 |
import json
|
6 |
-
import re
|
7 |
import logging
|
8 |
-
import
|
9 |
from datetime import datetime
|
10 |
from typing import List, Dict, Optional
|
11 |
|
12 |
-
from fastapi import FastAPI, HTTPException
|
13 |
from fastapi.responses import JSONResponse, StreamingResponse
|
14 |
from fastapi.middleware.cors import CORSMiddleware
|
15 |
from pydantic import BaseModel
|
16 |
-
import
|
17 |
-
import
|
18 |
-
|
19 |
-
# Logging setup
|
20 |
-
logging.basicConfig(level=logging.INFO)
|
21 |
-
logger = logging.getLogger("TxAgentAPI")
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
sys.path.insert(0, os.path.join(current_dir, "src"))
|
26 |
|
27 |
-
# TxAgent
|
28 |
from txagent.txagent import TxAgent
|
29 |
|
30 |
-
# MongoDB
|
31 |
-
from db.mongo import
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# FastAPI app
|
34 |
app = FastAPI(title="TxAgent API", version="2.1.0")
|
35 |
|
36 |
-
# CORS config
|
37 |
app.add_middleware(
|
38 |
CORSMiddleware,
|
39 |
-
allow_origins=["*"],
|
40 |
-
|
41 |
-
allow_methods=["*"],
|
42 |
-
allow_headers=["*"],
|
43 |
)
|
44 |
|
45 |
-
#
|
46 |
class ChatRequest(BaseModel):
|
47 |
message: str
|
48 |
temperature: float = 0.7
|
@@ -50,18 +44,25 @@ class ChatRequest(BaseModel):
|
|
50 |
history: Optional[List[Dict]] = None
|
51 |
format: Optional[str] = "clean"
|
52 |
|
53 |
-
#
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
text = re.sub(r'\n\s*\n', '\n\n', text)
|
56 |
text = re.sub(r'[ ]+', ' ', text)
|
57 |
-
return text.
|
58 |
|
59 |
def extract_section(text: str, heading: str) -> str:
|
60 |
try:
|
61 |
-
pattern = rf"{heading}:\n(.*?)(?=\n
|
62 |
match = re.search(pattern, text, re.DOTALL)
|
63 |
-
return
|
64 |
-
except:
|
|
|
65 |
return ""
|
66 |
|
67 |
def structure_medical_response(text: str) -> Dict:
|
@@ -69,136 +70,120 @@ def structure_medical_response(text: str) -> Dict:
|
|
69 |
"summary": extract_section(text, "Summary"),
|
70 |
"risks": extract_section(text, "Risks or Red Flags"),
|
71 |
"missed_issues": extract_section(text, "What the doctor might have missed"),
|
72 |
-
"recommendations": extract_section(text, "Suggested Clinical Actions")
|
73 |
}
|
74 |
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
async def analyze_and_store_result(patient: dict):
|
80 |
try:
|
81 |
-
|
82 |
message = (
|
83 |
-
"You are a clinical AI
|
84 |
-
"
|
85 |
-
"1. Summarize
|
86 |
-
"2. Identify red flags.\n"
|
87 |
-
"3.
|
88 |
-
"4. Suggest clinical
|
89 |
-
f"
|
90 |
)
|
91 |
|
92 |
raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024)
|
93 |
structured = structure_medical_response(raw)
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
{"patient_id": patient.get("fhir_id")},
|
97 |
-
{
|
98 |
-
"$set": {
|
99 |
-
"patient_id": patient.get("fhir_id"),
|
100 |
-
"full_name": patient.get("full_name"),
|
101 |
-
"raw": raw,
|
102 |
-
"structured": structured,
|
103 |
-
"analyzed_at": datetime.utcnow()
|
104 |
-
}
|
105 |
-
},
|
106 |
upsert=True
|
107 |
)
|
108 |
-
logger.info(f"
|
109 |
except Exception as e:
|
110 |
logger.error(f"Error analyzing patient: {e}")
|
111 |
|
112 |
-
async def
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
await asyncio.sleep(0.3)
|
118 |
-
except Exception as e:
|
119 |
-
logger.error(f"Batch analysis failed: {e}")
|
120 |
-
|
121 |
-
async def watch_new_patients():
|
122 |
-
try:
|
123 |
-
logger.info("Watching for new patient inserts...")
|
124 |
-
pipeline = [{'$match': {'operationType': 'insert'}}]
|
125 |
-
async with patients_collection.watch(pipeline) as stream:
|
126 |
-
async for change in stream:
|
127 |
-
patient = change["fullDocument"]
|
128 |
-
await analyze_and_store_result(patient)
|
129 |
-
except Exception as e:
|
130 |
-
logger.error(f"Change stream error: {e}")
|
131 |
|
|
|
132 |
@app.on_event("startup")
|
133 |
async def startup_event():
|
134 |
-
global agent
|
|
|
|
|
135 |
agent = TxAgent(
|
136 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
137 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
138 |
enable_finish=True,
|
139 |
-
|
140 |
force_finish=True,
|
|
|
|
|
|
|
141 |
)
|
142 |
agent.chat_prompt = (
|
143 |
-
"You are a clinical
|
144 |
)
|
145 |
agent.init_model()
|
146 |
-
logger.info("TxAgent
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
@app.post("/chat-stream")
|
151 |
-
async def
|
152 |
-
async def
|
153 |
try:
|
154 |
-
|
155 |
if request.history:
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
input_ids = agent.tokenizer.apply_chat_template(
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
for chunk in text.split():
|
164 |
yield chunk + " "
|
165 |
await asyncio.sleep(0.05)
|
166 |
except Exception as e:
|
167 |
-
|
168 |
-
|
169 |
-
return StreamingResponse(stream(), media_type="text/plain")
|
170 |
|
171 |
-
|
172 |
-
async def upload_file(file: UploadFile = File(...)):
|
173 |
-
try:
|
174 |
-
logger.info(f"Uploaded file: {file.filename}")
|
175 |
-
text = ""
|
176 |
-
if file.filename.endswith(".pdf"):
|
177 |
-
pdf = PyPDF2.PdfReader(file.file)
|
178 |
-
text = "\n".join(p.extract_text() for p in pdf.pages if p.extract_text())
|
179 |
-
else:
|
180 |
-
content = await file.read()
|
181 |
-
text = content.decode("utf-8", errors="ignore")
|
182 |
-
|
183 |
-
prompt = (
|
184 |
-
"You are a clinical support AI. Analyze the following:\n"
|
185 |
-
f"{text[:10000]}"
|
186 |
-
)
|
187 |
-
raw = agent.chat(message=prompt, history=[], temperature=0.7)
|
188 |
-
return {
|
189 |
-
"status": "success",
|
190 |
-
"response": clean_text(raw),
|
191 |
-
"structured": structure_medical_response(raw),
|
192 |
-
"timestamp": datetime.now().isoformat()
|
193 |
-
}
|
194 |
-
except Exception as e:
|
195 |
-
logger.error(f"Upload error: {e}")
|
196 |
-
raise HTTPException(status_code=500, detail=str(e))
|
197 |
-
|
198 |
-
@app.get("/status")
|
199 |
-
async def status():
|
200 |
-
return {
|
201 |
-
"status": "running",
|
202 |
-
"model": agent.model_name,
|
203 |
-
"timestamp": datetime.now().isoformat()
|
204 |
-
}
|
|
|
|
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
import json
|
|
|
4 |
import logging
|
5 |
+
import re
|
6 |
from datetime import datetime
|
7 |
from typing import List, Dict, Optional
|
8 |
|
9 |
+
from fastapi import FastAPI, HTTPException
|
10 |
from fastapi.responses import JSONResponse, StreamingResponse
|
11 |
from fastapi.middleware.cors import CORSMiddleware
|
12 |
from pydantic import BaseModel
|
13 |
+
from pymongo import MongoClient
|
14 |
+
from bson import ObjectId
|
15 |
+
import asyncio
|
|
|
|
|
|
|
16 |
|
17 |
+
# Adjust sys path
|
18 |
+
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
|
|
|
19 |
|
20 |
+
# TxAgent
|
21 |
from txagent.txagent import TxAgent
|
22 |
|
23 |
+
# MongoDB
|
24 |
+
from db.mongo import get_mongo_client
|
25 |
+
|
26 |
+
# Setup logging
|
27 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
28 |
+
logger = logging.getLogger("TxAgentAPI")
|
29 |
|
30 |
# FastAPI app
|
31 |
app = FastAPI(title="TxAgent API", version="2.1.0")
|
32 |
|
|
|
33 |
app.add_middleware(
|
34 |
CORSMiddleware,
|
35 |
+
allow_origins=["*"], allow_credentials=True,
|
36 |
+
allow_methods=["*"], allow_headers=["*"]
|
|
|
|
|
37 |
)
|
38 |
|
39 |
+
# Models
|
40 |
class ChatRequest(BaseModel):
|
41 |
message: str
|
42 |
temperature: float = 0.7
|
|
|
44 |
history: Optional[List[Dict]] = None
|
45 |
format: Optional[str] = "clean"
|
46 |
|
47 |
+
# Globals
|
48 |
+
agent = None
|
49 |
+
mongo_client = None
|
50 |
+
patients_collection = None
|
51 |
+
analysis_collection = None
|
52 |
+
|
53 |
+
# Helpers
|
54 |
+
def clean_text_response(text: str) -> str:
|
55 |
text = re.sub(r'\n\s*\n', '\n\n', text)
|
56 |
text = re.sub(r'[ ]+', ' ', text)
|
57 |
+
return text.replace("**", "").replace("__", "").strip()
|
58 |
|
59 |
def extract_section(text: str, heading: str) -> str:
|
60 |
try:
|
61 |
+
pattern = rf"{heading}:\n(.*?)(?=\n\w|\Z)"
|
62 |
match = re.search(pattern, text, re.DOTALL)
|
63 |
+
return clean_text_response(match.group(1)) if match else ""
|
64 |
+
except Exception as e:
|
65 |
+
logger.error(f"Section extraction failed: {e}")
|
66 |
return ""
|
67 |
|
68 |
def structure_medical_response(text: str) -> Dict:
|
|
|
70 |
"summary": extract_section(text, "Summary"),
|
71 |
"risks": extract_section(text, "Risks or Red Flags"),
|
72 |
"missed_issues": extract_section(text, "What the doctor might have missed"),
|
73 |
+
"recommendations": extract_section(text, "Suggested Clinical Actions")
|
74 |
}
|
75 |
|
76 |
+
def serialize_patient(patient: dict) -> dict:
|
77 |
+
patient_copy = patient.copy()
|
78 |
+
if "_id" in patient_copy:
|
79 |
+
patient_copy["_id"] = str(patient_copy["_id"])
|
80 |
+
return patient_copy
|
81 |
|
82 |
+
async def analyze_patient(patient: dict):
|
|
|
83 |
try:
|
84 |
+
doc = json.dumps(serialize_patient(patient), indent=2)
|
85 |
message = (
|
86 |
+
"You are a clinical decision support AI.\n\n"
|
87 |
+
"Given the patient document below:\n"
|
88 |
+
"1. Summarize their medical history.\n"
|
89 |
+
"2. Identify risks or red flags.\n"
|
90 |
+
"3. Highlight missed diagnoses or treatments.\n"
|
91 |
+
"4. Suggest next clinical steps.\n"
|
92 |
+
f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}"
|
93 |
)
|
94 |
|
95 |
raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024)
|
96 |
structured = structure_medical_response(raw)
|
97 |
|
98 |
+
analysis_doc = {
|
99 |
+
"patient_id": patient.get("fhir_id"),
|
100 |
+
"timestamp": datetime.utcnow(),
|
101 |
+
"summary": structured,
|
102 |
+
"raw": raw
|
103 |
+
}
|
104 |
+
await analysis_collection.update_one(
|
105 |
{"patient_id": patient.get("fhir_id")},
|
106 |
+
{"$set": analysis_doc},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
upsert=True
|
108 |
)
|
109 |
+
logger.info(f"✔️ Analysis stored for patient {patient.get('fhir_id')}")
|
110 |
except Exception as e:
|
111 |
logger.error(f"Error analyzing patient: {e}")
|
112 |
|
113 |
+
async def analyze_all_patients():
|
114 |
+
patients = await patients_collection.find({}).to_list(length=None)
|
115 |
+
for patient in patients:
|
116 |
+
await analyze_patient(patient)
|
117 |
+
await asyncio.sleep(0.1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
# Startup logic
|
120 |
@app.on_event("startup")
|
121 |
async def startup_event():
|
122 |
+
global agent, mongo_client, patients_collection, analysis_collection
|
123 |
+
|
124 |
+
# Init agent
|
125 |
agent = TxAgent(
|
126 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
127 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
128 |
enable_finish=True,
|
129 |
+
enable_rag=False,
|
130 |
force_finish=True,
|
131 |
+
enable_checker=True,
|
132 |
+
step_rag_num=4,
|
133 |
+
seed=42
|
134 |
)
|
135 |
agent.chat_prompt = (
|
136 |
+
"You are a clinical assistant AI. Analyze the patient's data and provide clear clinical recommendations."
|
137 |
)
|
138 |
agent.init_model()
|
139 |
+
logger.info("✅ TxAgent initialized")
|
140 |
+
|
141 |
+
# MongoDB
|
142 |
+
mongo_client = get_mongo_client()
|
143 |
+
db = mongo_client.get_default_database()
|
144 |
+
patients_collection = db.get_collection("patients")
|
145 |
+
analysis_collection = db.get_collection("patient_analysis_results")
|
146 |
+
|
147 |
+
logger.info("📡 Connected to MongoDB")
|
148 |
+
asyncio.create_task(analyze_all_patients())
|
149 |
+
|
150 |
+
# Endpoints
|
151 |
+
@app.get("/status")
|
152 |
+
async def status():
|
153 |
+
return {
|
154 |
+
"status": "running",
|
155 |
+
"version": "2.1.0",
|
156 |
+
"timestamp": datetime.utcnow().isoformat()
|
157 |
+
}
|
158 |
|
159 |
@app.post("/chat-stream")
|
160 |
+
async def chat_stream_endpoint(request: ChatRequest):
|
161 |
+
async def token_stream():
|
162 |
try:
|
163 |
+
conversation = [{"role": "system", "content": agent.chat_prompt}]
|
164 |
if request.history:
|
165 |
+
conversation.extend(request.history)
|
166 |
+
conversation.append({"role": "user", "content": request.message})
|
167 |
+
|
168 |
+
input_ids = agent.tokenizer.apply_chat_template(
|
169 |
+
conversation, add_generation_prompt=True, return_tensors="pt"
|
170 |
+
).to(agent.device)
|
171 |
+
|
172 |
+
output = agent.model.generate(
|
173 |
+
input_ids,
|
174 |
+
do_sample=True,
|
175 |
+
temperature=request.temperature,
|
176 |
+
max_new_tokens=request.max_new_tokens,
|
177 |
+
pad_token_id=agent.tokenizer.eos_token_id,
|
178 |
+
return_dict_in_generate=True
|
179 |
+
)
|
180 |
+
|
181 |
+
text = agent.tokenizer.decode(output["sequences"][0][input_ids.shape[1]:], skip_special_tokens=True)
|
182 |
for chunk in text.split():
|
183 |
yield chunk + " "
|
184 |
await asyncio.sleep(0.05)
|
185 |
except Exception as e:
|
186 |
+
logger.error(f"Streaming error: {e}")
|
187 |
+
yield f"⚠️ Error: {e}"
|
|
|
188 |
|
189 |
+
return StreamingResponse(token_stream(), media_type="text/plain")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|