File size: 12,470 Bytes
973658c eab55d6 bdb999a 3539dd4 41c4b2a d13831a 47975be d13831a 973658c 3cdcbc4 b4fa34c 3cdcbc4 abc4511 9ef8abc c441954 ac93cad abc4511 dae38a2 7323cb6 abc4511 1da2cfd abc4511 1da2cfd 47975be abc4511 6af3907 47975be abc4511 41c4b2a abc4511 1da2cfd b4fa34c eab55d6 b4fa34c e24be23 abc4511 dae38a2 abc4511 7323cb6 6af3907 abc4511 1da2cfd abc4511 1da2cfd 47975be abc4511 dae38a2 abc4511 dae38a2 6af3907 b4fa34c abc4511 7323cb6 dae38a2 7323cb6 b4fa34c eab55d6 b4fa34c abc4511 9ec5ec4 7323cb6 665f0eb 9ec5ec4 f4976e2 9ec5ec4 665f0eb 9ec5ec4 665f0eb f4976e2 5f7a1a1 f4976e2 eab55d6 6af3907 abc4511 eab55d6 b4fa34c eab55d6 853633a f4976e2 47975be 41c4b2a f4976e2 41c4b2a 47975be 41c4b2a abc4511 b4fa34c abc4511 41c4b2a fd2b3df 41c4b2a ac11a7e 41c4b2a 34a564f b4fa34c 34a564f b4fa34c eab55d6 47975be b4fa34c 47975be 41c4b2a b4fa34c eab55d6 853633a 8126e99 853633a b4fa34c ac11a7e 41c4b2a 6cafd98 b4fa34c eab55d6 41c4b2a 6af3907 41c4b2a abc4511 e24be23 fe67870 e24be23 eab55d6 fe67870 eab55d6 41c4b2a eab55d6 fe67870 eab55d6 41c4b2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import traceback
import torch
import copy
import time
# Configure environment variables and logging
os.environ["VLLM_LOGGING_LEVEL"] = "DEBUG"
if not torch.cuda.is_available():
print("No GPU detected. Forcing CPU mode by setting CUDA_VISIBLE_DEVICES to an empty string.")
os.environ["CUDA_VISIBLE_DEVICES"] = ""
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations'}
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
# Always extract the first 3 pages
for i, page in enumerate(pdf.pages[:3]):
text = page.extract_text() or ""
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
# For pages 4 to max_pages, add only if medical keywords are found
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
page_text = page.extract_text() or ""
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception as e:
print("PDF processing error:", str(e))
traceback.print_exc()
return str(e)
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_priority_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
print("Error processing", file_path, str(e))
traceback.print_exc()
return json.dumps({"error": str(e)})
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
print(f"[{tag}] GPU/CPU monitor failed: {e}")
traceback.print_exc()
def init_agent():
try:
print("π Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
print("β
Agent Ready")
return agent
except Exception as e:
print("β Error initializing agent:", str(e))
traceback.print_exc()
raise e
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>π©Ί Clinical Oversight Assistant</h1>")
# Persistent conversation state to maintain history
conversation_state = gr.State([])
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
def analyze(message: str, state: list, files: list):
if state is None:
state = []
history = state
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "β³ Analyzing records for potential oversights..."})
# Yield the initial update
yield copy.deepcopy(history), None, copy.deepcopy(history)
extracted = ""
file_hash_value = ""
if files:
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
results = []
for future in as_completed(futures):
try:
res = future.result()
results.append(sanitize_utf8(res))
except Exception as e:
print("β Error in file processing:", str(e))
traceback.print_exc()
extracted = "\n".join(results)
file_hash_value = file_hash(files[0].name)
prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up
Medical Records:
{extracted[:8000]}
### Potential Oversights:
"""
print("π Generated prompt:")
print(prompt)
full_response = ""
response_chunks = []
tool_calls_rendered = []
try:
for chunk in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=2048,
max_token=4096,
call_agent=False,
conversation=[]
):
if chunk is None:
continue
chunk_content = chunk if isinstance(chunk, str) else getattr(chunk, 'content', '')
if not chunk_content:
continue
response_chunks.append(chunk_content)
full_response = "".join(response_chunks)
# Collect and render any tool calls
matches = re.findall(r"\[TOOL_CALLS\]\[(.*?)\]", chunk_content, re.DOTALL)
for m in matches:
tool_calls_rendered.append(f"\nπ¦ Tool Call: [{m.strip()}]")
display_response = re.sub(r"\[TOOL_CALLS\].*?\n*", "", full_response, flags=re.DOTALL)
display_response = display_response.replace('[TxAgent]', '').strip()
display_response += "\n\n" + "\n".join(tool_calls_rendered)
if history and history[-1]["role"] == "assistant":
history[-1]["content"] = display_response
else:
history.append({"role": "assistant", "content": display_response})
# Yield updated conversation state
yield copy.deepcopy(history), None, copy.deepcopy(history)
full_response = re.sub(r"\[TOOL_CALLS\].*?\n*", "", full_response, flags=re.DOTALL).strip()
full_response = full_response.replace('[TxAgent]', '').strip()
report_path = None
if file_hash_value:
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
with open(report_path, "w", encoding="utf-8") as f:
f.write(full_response)
if history and history[-1]["role"] == "assistant":
history[-1]["content"] = full_response
else:
history.append({"role": "assistant", "content": full_response})
yield copy.deepcopy(history), report_path if report_path and os.path.exists(report_path) else None, copy.deepcopy(history)
except Exception as e:
history.append({"role": "assistant", "content": f"β An error occurred in analyze: {str(e)}"})
traceback.print_exc()
yield copy.deepcopy(history), None, copy.deepcopy(history)
send_btn.click(analyze, inputs=[msg_input, conversation_state, file_upload],
outputs=[chatbot, download_output, conversation_state])
msg_input.submit(analyze, inputs=[msg_input, conversation_state, file_upload],
outputs=[chatbot, download_output, conversation_state])
return demo
# Global variable to hold the WSGI/ASGI app for container environments.
app = None
if __name__ == "__main__":
try:
print("π Launching app...")
agent = init_agent()
demo = create_ui(agent)
# Launch the app with queueing; capture the returned app instance.
launched_app, local_url, share_url = demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False,
ssr=False # Disable SSR to improve UI updates
)
# Assign the underlying web app to the global variable for container access.
app = launched_app.app
except Exception as e:
print("β Fatal error during launch:", str(e))
traceback.print_exc()
|