Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,21 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import hashlib
|
3 |
import shutil
|
4 |
import time
|
5 |
-
from threading import Thread, Lock
|
6 |
import re
|
7 |
-
import
|
8 |
-
import
|
9 |
|
10 |
# ---------------------------------------------------------------------------------------
|
11 |
-
#
|
12 |
# ---------------------------------------------------------------------------------------
|
13 |
-
# Use a persistent cache directory (adjust the path as needed based on your HF Space settings)
|
14 |
persistent_dir = "/data/hf_cache"
|
15 |
os.makedirs(persistent_dir, exist_ok=True)
|
16 |
|
@@ -23,25 +28,23 @@ vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
|
|
23 |
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
|
24 |
os.makedirs(directory, exist_ok=True)
|
25 |
|
26 |
-
# Set environment variables so that model and transformers caches point to persistent storage.
|
27 |
os.environ["HF_HOME"] = model_cache_dir
|
28 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
29 |
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
|
30 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
31 |
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
32 |
|
33 |
-
#
|
|
|
|
|
34 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
35 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
36 |
sys.path.insert(0, src_path)
|
37 |
|
38 |
-
# ---------------------------------------------------------------------------------------
|
39 |
-
# Import the TxAgent from your tool package
|
40 |
-
# ---------------------------------------------------------------------------------------
|
41 |
from txagent.txagent import TxAgent
|
42 |
|
43 |
# ---------------------------------------------------------------------------------------
|
44 |
-
#
|
45 |
# ---------------------------------------------------------------------------------------
|
46 |
MEDICAL_KEYWORDS = {
|
47 |
'diagnosis', 'assessment', 'plan', 'results', 'medications',
|
@@ -59,11 +62,9 @@ def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
|
|
59 |
try:
|
60 |
text_chunks = []
|
61 |
with pdfplumber.open(file_path) as pdf:
|
62 |
-
# Process first three pages always
|
63 |
for i, page in enumerate(pdf.pages[:3]):
|
64 |
text = page.extract_text() or ""
|
65 |
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
|
66 |
-
# Process subsequent pages only if they contain key medical keywords
|
67 |
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
|
68 |
page_text = page.extract_text() or ""
|
69 |
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
|
@@ -83,7 +84,6 @@ def convert_file_to_json(file_path: str, file_type: str) -> str:
|
|
83 |
if file_type == "pdf":
|
84 |
text = extract_priority_pages(file_path)
|
85 |
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
86 |
-
Thread(target=full_pdf_processing, args=(file_path, h)).start()
|
87 |
elif file_type == "csv":
|
88 |
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
89 |
skip_blank_lines=False, on_bad_lines="skip")
|
@@ -104,34 +104,34 @@ def convert_file_to_json(file_path: str, file_type: str) -> str:
|
|
104 |
except Exception as e:
|
105 |
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
|
106 |
|
107 |
-
def
|
108 |
try:
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
120 |
except Exception as e:
|
121 |
-
print(f"
|
122 |
-
|
123 |
-
# ---------------------------------------------------------------------------------------
|
124 |
-
# Global agent variable and thread-safe lock for background model loading
|
125 |
-
# ---------------------------------------------------------------------------------------
|
126 |
-
agent = None
|
127 |
-
agent_lock = Lock()
|
128 |
|
129 |
def init_agent():
|
|
|
|
|
|
|
130 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
131 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
132 |
if not os.path.exists(target_tool_path):
|
133 |
shutil.copy(default_tool_path, target_tool_path)
|
134 |
-
|
|
|
135 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
136 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
137 |
tool_files_dict={"new_tool": target_tool_path},
|
@@ -141,24 +141,21 @@ def init_agent():
|
|
141 |
seed=100,
|
142 |
additional_default_tools=[],
|
143 |
)
|
144 |
-
|
145 |
-
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
print(
|
152 |
-
agent = init_agent()
|
153 |
-
print("Agent initialization complete.")
|
154 |
|
155 |
-
|
156 |
-
threading.Thread(target=load_agent_in_background, daemon=True).start()
|
157 |
|
158 |
# ---------------------------------------------------------------------------------------
|
159 |
-
#
|
160 |
# ---------------------------------------------------------------------------------------
|
161 |
-
def create_ui():
|
162 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
163 |
gr.Markdown("""
|
164 |
<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>
|
@@ -173,20 +170,10 @@ def create_ui():
|
|
173 |
download_output = gr.File(label="Download Full Report")
|
174 |
|
175 |
def analyze_potential_oversights(message: str, history: list, files: list):
|
176 |
-
|
177 |
-
|
178 |
-
history = history + [
|
179 |
-
{"role": "user", "content": message},
|
180 |
-
{"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}
|
181 |
-
]
|
182 |
yield history, None
|
183 |
|
184 |
-
if agent is None:
|
185 |
-
history.append({"role": "assistant",
|
186 |
-
"content": "🕒 The model is still loading. Please wait a moment and try again."})
|
187 |
-
yield history, None
|
188 |
-
return
|
189 |
-
|
190 |
extracted_data = ""
|
191 |
file_hash_value = ""
|
192 |
if files and isinstance(files, list):
|
@@ -195,13 +182,10 @@ def create_ui():
|
|
195 |
executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower())
|
196 |
for f in files if hasattr(f, 'name')
|
197 |
]
|
198 |
-
results = []
|
199 |
-
for future in as_completed(futures):
|
200 |
-
results.append(sanitize_utf8(future.result()))
|
201 |
extracted_data = "\n".join(results)
|
202 |
file_hash_value = file_hash(files[0].name) if hasattr(files[0], 'name') else ""
|
203 |
|
204 |
-
# Truncate extracted data to avoid token overflow
|
205 |
max_extracted_chars = 12000
|
206 |
truncated_data = extracted_data[:max_extracted_chars]
|
207 |
|
@@ -216,10 +200,8 @@ Medical Records:
|
|
216 |
|
217 |
### Potential Oversights:
|
218 |
"""
|
219 |
-
|
220 |
response = ""
|
221 |
try:
|
222 |
-
# Stream agent responses and update the last message in the conversation with each chunk.
|
223 |
for chunk in agent.run_gradio_chat(
|
224 |
message=analysis_prompt,
|
225 |
history=[],
|
@@ -229,18 +211,16 @@ Medical Records:
|
|
229 |
call_agent=False,
|
230 |
conversation=[]
|
231 |
):
|
232 |
-
if chunk is None:
|
233 |
-
continue
|
234 |
if isinstance(chunk, str):
|
235 |
response += chunk
|
236 |
elif isinstance(chunk, list):
|
237 |
response += "".join([c.content for c in chunk if hasattr(c, 'content')])
|
238 |
cleaned = response.replace("[TOOL_CALLS]", "").strip()
|
239 |
-
# Update the assistant message (last item in history) with the latest accumulated answer
|
240 |
history[-1] = {"role": "assistant", "content": cleaned}
|
241 |
yield history, None
|
242 |
except Exception as agent_error:
|
243 |
-
history[-1] = {"role": "assistant", "content": f"❌ Analysis failed
|
244 |
yield history, None
|
245 |
return
|
246 |
|
@@ -248,7 +228,6 @@ Medical Records:
|
|
248 |
if not final_output:
|
249 |
final_output = "No clear oversights identified. Recommend comprehensive review."
|
250 |
|
251 |
-
# Update the assistant's message with the final output
|
252 |
history[-1] = {"role": "assistant", "content": final_output}
|
253 |
|
254 |
report_path = None
|
@@ -265,15 +244,20 @@ Medical Records:
|
|
265 |
msg_input.submit(analyze_potential_oversights,
|
266 |
inputs=[msg_input, gr.State([]), file_upload],
|
267 |
outputs=[chatbot, download_output])
|
268 |
-
gr.Examples([
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
272 |
return demo
|
273 |
|
|
|
|
|
|
|
274 |
if __name__ == "__main__":
|
275 |
-
print("
|
276 |
-
|
|
|
277 |
demo.queue(api_open=False).launch(
|
278 |
server_name="0.0.0.0",
|
279 |
server_port=7860,
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import pdfplumber
|
5 |
+
import json
|
6 |
+
import gradio as gr
|
7 |
+
from typing import List
|
8 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
import shutil
|
11 |
import time
|
|
|
12 |
import re
|
13 |
+
import psutil
|
14 |
+
import subprocess
|
15 |
|
16 |
# ---------------------------------------------------------------------------------------
|
17 |
+
# Persistent directory for Hugging Face Spaces
|
18 |
# ---------------------------------------------------------------------------------------
|
|
|
19 |
persistent_dir = "/data/hf_cache"
|
20 |
os.makedirs(persistent_dir, exist_ok=True)
|
21 |
|
|
|
28 |
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
|
29 |
os.makedirs(directory, exist_ok=True)
|
30 |
|
|
|
31 |
os.environ["HF_HOME"] = model_cache_dir
|
32 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
33 |
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
|
34 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
35 |
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
36 |
|
37 |
+
# ---------------------------------------------------------------------------------------
|
38 |
+
# Add src to path
|
39 |
+
# ---------------------------------------------------------------------------------------
|
40 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
41 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
42 |
sys.path.insert(0, src_path)
|
43 |
|
|
|
|
|
|
|
44 |
from txagent.txagent import TxAgent
|
45 |
|
46 |
# ---------------------------------------------------------------------------------------
|
47 |
+
# Helper functions
|
48 |
# ---------------------------------------------------------------------------------------
|
49 |
MEDICAL_KEYWORDS = {
|
50 |
'diagnosis', 'assessment', 'plan', 'results', 'medications',
|
|
|
62 |
try:
|
63 |
text_chunks = []
|
64 |
with pdfplumber.open(file_path) as pdf:
|
|
|
65 |
for i, page in enumerate(pdf.pages[:3]):
|
66 |
text = page.extract_text() or ""
|
67 |
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
|
|
|
68 |
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
|
69 |
page_text = page.extract_text() or ""
|
70 |
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
|
|
|
84 |
if file_type == "pdf":
|
85 |
text = extract_priority_pages(file_path)
|
86 |
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
|
|
87 |
elif file_type == "csv":
|
88 |
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
89 |
skip_blank_lines=False, on_bad_lines="skip")
|
|
|
104 |
except Exception as e:
|
105 |
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
|
106 |
|
107 |
+
def log_system_usage(tag=""):
|
108 |
try:
|
109 |
+
cpu_percent = psutil.cpu_percent(interval=1)
|
110 |
+
mem = psutil.virtual_memory()
|
111 |
+
print(f"[{tag}] 🧠 CPU: {cpu_percent}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
|
112 |
+
result = subprocess.run(
|
113 |
+
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
|
114 |
+
capture_output=True,
|
115 |
+
text=True,
|
116 |
+
)
|
117 |
+
if result.returncode == 0:
|
118 |
+
mem_used, mem_total, util = result.stdout.strip().split(", ")
|
119 |
+
print(f"[{tag}] ⚡ GPU: {mem_used}MB / {mem_total}MB | Utilization: {util}%")
|
120 |
+
else:
|
121 |
+
print(f"[{tag}] ⚡ GPU info not available.")
|
122 |
except Exception as e:
|
123 |
+
print(f"[{tag}] ⚠️ Failed to log system usage: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
def init_agent():
|
126 |
+
print("🔁 Initializing TxAgent...")
|
127 |
+
log_system_usage("Before Model Load")
|
128 |
+
|
129 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
130 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
131 |
if not os.path.exists(target_tool_path):
|
132 |
shutil.copy(default_tool_path, target_tool_path)
|
133 |
+
|
134 |
+
agent = TxAgent(
|
135 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
136 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
137 |
tool_files_dict={"new_tool": target_tool_path},
|
|
|
141 |
seed=100,
|
142 |
additional_default_tools=[],
|
143 |
)
|
144 |
+
agent.init_model()
|
145 |
+
log_system_usage("After Model Load")
|
146 |
|
147 |
+
print("✅ TxAgent is ready.")
|
148 |
+
print("📦 Cached model files:")
|
149 |
+
for root, _, files in os.walk(model_cache_dir):
|
150 |
+
for file in files:
|
151 |
+
print(os.path.join(root, file))
|
|
|
|
|
152 |
|
153 |
+
return agent
|
|
|
154 |
|
155 |
# ---------------------------------------------------------------------------------------
|
156 |
+
# Gradio UI
|
157 |
# ---------------------------------------------------------------------------------------
|
158 |
+
def create_ui(agent):
|
159 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
160 |
gr.Markdown("""
|
161 |
<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>
|
|
|
170 |
download_output = gr.File(label="Download Full Report")
|
171 |
|
172 |
def analyze_potential_oversights(message: str, history: list, files: list):
|
173 |
+
history = history + [{"role": "user", "content": message},
|
174 |
+
{"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}]
|
|
|
|
|
|
|
|
|
175 |
yield history, None
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
extracted_data = ""
|
178 |
file_hash_value = ""
|
179 |
if files and isinstance(files, list):
|
|
|
182 |
executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower())
|
183 |
for f in files if hasattr(f, 'name')
|
184 |
]
|
185 |
+
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
|
|
|
|
|
186 |
extracted_data = "\n".join(results)
|
187 |
file_hash_value = file_hash(files[0].name) if hasattr(files[0], 'name') else ""
|
188 |
|
|
|
189 |
max_extracted_chars = 12000
|
190 |
truncated_data = extracted_data[:max_extracted_chars]
|
191 |
|
|
|
200 |
|
201 |
### Potential Oversights:
|
202 |
"""
|
|
|
203 |
response = ""
|
204 |
try:
|
|
|
205 |
for chunk in agent.run_gradio_chat(
|
206 |
message=analysis_prompt,
|
207 |
history=[],
|
|
|
211 |
call_agent=False,
|
212 |
conversation=[]
|
213 |
):
|
214 |
+
if chunk is None: continue
|
|
|
215 |
if isinstance(chunk, str):
|
216 |
response += chunk
|
217 |
elif isinstance(chunk, list):
|
218 |
response += "".join([c.content for c in chunk if hasattr(c, 'content')])
|
219 |
cleaned = response.replace("[TOOL_CALLS]", "").strip()
|
|
|
220 |
history[-1] = {"role": "assistant", "content": cleaned}
|
221 |
yield history, None
|
222 |
except Exception as agent_error:
|
223 |
+
history[-1] = {"role": "assistant", "content": f"❌ Analysis failed: {str(agent_error)}"}
|
224 |
yield history, None
|
225 |
return
|
226 |
|
|
|
228 |
if not final_output:
|
229 |
final_output = "No clear oversights identified. Recommend comprehensive review."
|
230 |
|
|
|
231 |
history[-1] = {"role": "assistant", "content": final_output}
|
232 |
|
233 |
report_path = None
|
|
|
244 |
msg_input.submit(analyze_potential_oversights,
|
245 |
inputs=[msg_input, gr.State([]), file_upload],
|
246 |
outputs=[chatbot, download_output])
|
247 |
+
gr.Examples([
|
248 |
+
["What might have been missed in this patient's treatment?"],
|
249 |
+
["Are there any medication conflicts in these records?"],
|
250 |
+
["What abnormal results require follow-up?"]],
|
251 |
+
inputs=msg_input)
|
252 |
return demo
|
253 |
|
254 |
+
# ---------------------------------------------------------------------------------------
|
255 |
+
# Launch
|
256 |
+
# ---------------------------------------------------------------------------------------
|
257 |
if __name__ == "__main__":
|
258 |
+
print("🚀 Starting TxAgent App...")
|
259 |
+
agent = init_agent()
|
260 |
+
demo = create_ui(agent)
|
261 |
demo.queue(api_open=False).launch(
|
262 |
server_name="0.0.0.0",
|
263 |
server_port=7860,
|