Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
|
|
|
2 |
import pandas as pd
|
3 |
import pdfplumber
|
4 |
import json
|
@@ -8,10 +9,10 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
8 |
import hashlib
|
9 |
import shutil
|
10 |
import time
|
11 |
-
from
|
12 |
-
from threading import Thread
|
13 |
import re
|
14 |
import tempfile
|
|
|
15 |
|
16 |
# Environment setup
|
17 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
@@ -59,8 +60,11 @@ def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
|
|
59 |
try:
|
60 |
text_chunks = []
|
61 |
with pdfplumber.open(file_path) as pdf:
|
|
|
62 |
for i, page in enumerate(pdf.pages[:3]):
|
63 |
-
|
|
|
|
|
64 |
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
|
65 |
page_text = page.extract_text() or ""
|
66 |
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
|
@@ -74,18 +78,18 @@ def convert_file_to_json(file_path: str, file_type: str) -> str:
|
|
74 |
h = file_hash(file_path)
|
75 |
cache_path = os.path.join(file_cache_dir, f"{h}.json")
|
76 |
if os.path.exists(cache_path):
|
77 |
-
|
|
|
78 |
|
79 |
if file_type == "pdf":
|
80 |
text = extract_priority_pages(file_path)
|
81 |
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
82 |
Thread(target=full_pdf_processing, args=(file_path, h)).start()
|
83 |
-
|
84 |
elif file_type == "csv":
|
85 |
-
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
|
|
86 |
content = df.fillna("").astype(str).values.tolist()
|
87 |
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
88 |
-
|
89 |
elif file_type in ["xls", "xlsx"]:
|
90 |
try:
|
91 |
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
|
@@ -93,39 +97,40 @@ def convert_file_to_json(file_path: str, file_type: str) -> str:
|
|
93 |
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
|
94 |
content = df.fillna("").astype(str).values.tolist()
|
95 |
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
96 |
-
|
97 |
else:
|
98 |
-
|
99 |
-
|
100 |
with open(cache_path, "w", encoding="utf-8") as f:
|
101 |
f.write(result)
|
102 |
return result
|
103 |
-
|
104 |
except Exception as e:
|
105 |
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
|
106 |
|
107 |
-
def full_pdf_processing(file_path: str,
|
108 |
try:
|
109 |
-
cache_path = os.path.join(file_cache_dir, f"{
|
110 |
if os.path.exists(cache_path):
|
111 |
return
|
112 |
with pdfplumber.open(file_path) as pdf:
|
113 |
-
full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}"
|
|
|
114 |
result = json.dumps({"filename": os.path.basename(file_path), "content": full_text, "status": "complete"})
|
115 |
with open(cache_path, "w", encoding="utf-8") as f:
|
116 |
f.write(result)
|
117 |
-
with open(os.path.join(report_dir, f"{
|
118 |
out.write(full_text)
|
119 |
except Exception as e:
|
120 |
print(f"Background processing failed: {str(e)}")
|
121 |
|
|
|
|
|
|
|
|
|
122 |
def init_agent():
|
123 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
124 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
125 |
if not os.path.exists(target_tool_path):
|
126 |
shutil.copy(default_tool_path, target_tool_path)
|
127 |
-
|
128 |
-
agent = TxAgent(
|
129 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
130 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
131 |
tool_files_dict={"new_tool": target_tool_path},
|
@@ -135,49 +140,68 @@ def init_agent():
|
|
135 |
seed=100,
|
136 |
additional_default_tools=[],
|
137 |
)
|
138 |
-
|
139 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
def create_ui(
|
142 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
143 |
gr.Markdown("""
|
144 |
<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>
|
145 |
<h3 style='text-align: center;'>Identify potential oversights in patient care</h3>
|
146 |
""")
|
147 |
-
|
148 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
149 |
-
file_upload = gr.File(label="Upload Medical Records",
|
|
|
|
|
150 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
151 |
send_btn = gr.Button("Analyze", variant="primary")
|
152 |
-
conversation_state = gr.State([])
|
153 |
download_output = gr.File(label="Download Full Report")
|
154 |
|
155 |
-
def analyze_potential_oversights(message: str, history: list,
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
163 |
yield history, None
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
181 |
1. List potential missed diagnoses
|
182 |
2. Flag any medication conflicts
|
183 |
3. Note incomplete assessments
|
@@ -188,68 +212,65 @@ Medical Records:
|
|
188 |
|
189 |
### Potential Oversights:
|
190 |
"""
|
191 |
-
response = ""
|
192 |
-
try:
|
193 |
-
# Stream the agent responses; skip any None chunks
|
194 |
-
for chunk in agent.run_gradio_chat(
|
195 |
-
message=analysis_prompt,
|
196 |
-
history=[],
|
197 |
-
temperature=0.2,
|
198 |
-
max_new_tokens=1024,
|
199 |
-
max_token=4096,
|
200 |
-
call_agent=False,
|
201 |
-
conversation=conversation
|
202 |
-
):
|
203 |
-
if chunk is None:
|
204 |
-
continue
|
205 |
-
if isinstance(chunk, str):
|
206 |
-
response += chunk
|
207 |
-
elif isinstance(chunk, list):
|
208 |
-
response += "".join([c.content for c in chunk if hasattr(c, 'content')])
|
209 |
-
# Yield partial response updates
|
210 |
-
cleaned = response.replace("[TOOL_CALLS]", "").strip()
|
211 |
-
yield history[:-1] + [{"role": "assistant", "content": cleaned}], None
|
212 |
-
except Exception as agent_error:
|
213 |
-
history.append({"role": "assistant", "content": f"❌ Analysis failed during processing: {str(agent_error)}"})
|
214 |
-
yield history, None
|
215 |
-
return
|
216 |
-
|
217 |
-
final_output = response.replace("[TOOL_CALLS]", "").strip()
|
218 |
-
if not final_output:
|
219 |
-
final_output = "No clear oversights identified. Recommend comprehensive review."
|
220 |
-
|
221 |
-
report_path = None
|
222 |
-
if file_hash_value:
|
223 |
-
possible_report = os.path.join(report_dir, f"{file_hash_value}_report.txt")
|
224 |
-
if os.path.exists(possible_report):
|
225 |
-
report_path = possible_report
|
226 |
-
|
227 |
-
history = history[:-1] + [{"role": "assistant", "content": final_output}]
|
228 |
-
yield history, report_path
|
229 |
|
230 |
-
|
231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
yield history, None
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
[
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
return demo
|
246 |
|
247 |
if __name__ == "__main__":
|
248 |
-
print("Initializing medical analysis agent...")
|
249 |
-
agent = init_agent()
|
250 |
-
|
251 |
print("Launching interface...")
|
252 |
-
demo = create_ui(
|
253 |
demo.queue(api_open=False).launch(
|
254 |
server_name="0.0.0.0",
|
255 |
server_port=7860,
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
import pandas as pd
|
4 |
import pdfplumber
|
5 |
import json
|
|
|
9 |
import hashlib
|
10 |
import shutil
|
11 |
import time
|
12 |
+
from threading import Thread, Lock
|
|
|
13 |
import re
|
14 |
import tempfile
|
15 |
+
import threading
|
16 |
|
17 |
# Environment setup
|
18 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
|
60 |
try:
|
61 |
text_chunks = []
|
62 |
with pdfplumber.open(file_path) as pdf:
|
63 |
+
# Process first three pages
|
64 |
for i, page in enumerate(pdf.pages[:3]):
|
65 |
+
text = page.extract_text() or ""
|
66 |
+
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
|
67 |
+
# Check for keywords on later pages and add if found
|
68 |
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
|
69 |
page_text = page.extract_text() or ""
|
70 |
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
|
|
|
78 |
h = file_hash(file_path)
|
79 |
cache_path = os.path.join(file_cache_dir, f"{h}.json")
|
80 |
if os.path.exists(cache_path):
|
81 |
+
with open(cache_path, "r", encoding="utf-8") as f:
|
82 |
+
return f.read()
|
83 |
|
84 |
if file_type == "pdf":
|
85 |
text = extract_priority_pages(file_path)
|
86 |
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
87 |
Thread(target=full_pdf_processing, args=(file_path, h)).start()
|
|
|
88 |
elif file_type == "csv":
|
89 |
+
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
90 |
+
skip_blank_lines=False, on_bad_lines="skip")
|
91 |
content = df.fillna("").astype(str).values.tolist()
|
92 |
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
|
|
93 |
elif file_type in ["xls", "xlsx"]:
|
94 |
try:
|
95 |
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
|
|
|
97 |
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
|
98 |
content = df.fillna("").astype(str).values.tolist()
|
99 |
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
|
|
100 |
else:
|
101 |
+
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
|
|
|
102 |
with open(cache_path, "w", encoding="utf-8") as f:
|
103 |
f.write(result)
|
104 |
return result
|
|
|
105 |
except Exception as e:
|
106 |
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
|
107 |
|
108 |
+
def full_pdf_processing(file_path: str, file_hash_value: str):
|
109 |
try:
|
110 |
+
cache_path = os.path.join(file_cache_dir, f"{file_hash_value}_full.json")
|
111 |
if os.path.exists(cache_path):
|
112 |
return
|
113 |
with pdfplumber.open(file_path) as pdf:
|
114 |
+
full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}"
|
115 |
+
for i, page in enumerate(pdf.pages)])
|
116 |
result = json.dumps({"filename": os.path.basename(file_path), "content": full_text, "status": "complete"})
|
117 |
with open(cache_path, "w", encoding="utf-8") as f:
|
118 |
f.write(result)
|
119 |
+
with open(os.path.join(report_dir, f"{file_hash_value}_report.txt"), "w", encoding="utf-8") as out:
|
120 |
out.write(full_text)
|
121 |
except Exception as e:
|
122 |
print(f"Background processing failed: {str(e)}")
|
123 |
|
124 |
+
# Global agent and a lock for safe multi-threaded access
|
125 |
+
agent = None
|
126 |
+
agent_lock = Lock()
|
127 |
+
|
128 |
def init_agent():
|
129 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
130 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
131 |
if not os.path.exists(target_tool_path):
|
132 |
shutil.copy(default_tool_path, target_tool_path)
|
133 |
+
new_agent = TxAgent(
|
|
|
134 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
135 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
136 |
tool_files_dict={"new_tool": target_tool_path},
|
|
|
140 |
seed=100,
|
141 |
additional_default_tools=[],
|
142 |
)
|
143 |
+
new_agent.init_model()
|
144 |
+
return new_agent
|
145 |
+
|
146 |
+
def load_agent_in_background():
|
147 |
+
global agent
|
148 |
+
with agent_lock:
|
149 |
+
if agent is None:
|
150 |
+
print("Initializing agent in background...")
|
151 |
+
agent = init_agent()
|
152 |
+
print("Agent initialization complete.")
|
153 |
+
|
154 |
+
# Start background agent loading at startup
|
155 |
+
threading.Thread(target=load_agent_in_background, daemon=True).start()
|
156 |
|
157 |
+
def create_ui():
|
158 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
159 |
gr.Markdown("""
|
160 |
<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>
|
161 |
<h3 style='text-align: center;'>Identify potential oversights in patient care</h3>
|
162 |
""")
|
|
|
163 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
164 |
+
file_upload = gr.File(label="Upload Medical Records",
|
165 |
+
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
|
166 |
+
file_count="multiple")
|
167 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
168 |
send_btn = gr.Button("Analyze", variant="primary")
|
|
|
169 |
download_output = gr.File(label="Download Full Report")
|
170 |
|
171 |
+
def analyze_potential_oversights(message: str, history: list, files: list):
|
172 |
+
global agent
|
173 |
+
# Append user and interim assistant message
|
174 |
+
history = history + [
|
175 |
+
{"role": "user", "content": message},
|
176 |
+
{"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}
|
177 |
+
]
|
178 |
+
yield history, None
|
179 |
+
|
180 |
+
if agent is None:
|
181 |
+
history.append({"role": "assistant",
|
182 |
+
"content": "🕒 The model is still loading. Please wait a moment and try again."})
|
183 |
yield history, None
|
184 |
+
return
|
185 |
+
|
186 |
+
extracted_data = ""
|
187 |
+
file_hash_value = ""
|
188 |
+
if files and isinstance(files, list):
|
189 |
+
with ThreadPoolExecutor(max_workers=4) as executor:
|
190 |
+
futures = [
|
191 |
+
executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower())
|
192 |
+
for f in files if hasattr(f, 'name')
|
193 |
+
]
|
194 |
+
results = []
|
195 |
+
for future in as_completed(futures):
|
196 |
+
results.append(sanitize_utf8(future.result()))
|
197 |
+
extracted_data = "\n".join(results)
|
198 |
+
file_hash_value = file_hash(files[0].name) if hasattr(files[0], 'name') else ""
|
199 |
+
|
200 |
+
# Truncate the extracted data to avoid token overflows
|
201 |
+
max_extracted_chars = 12000
|
202 |
+
truncated_data = extracted_data[:max_extracted_chars]
|
203 |
+
|
204 |
+
analysis_prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
|
205 |
1. List potential missed diagnoses
|
206 |
2. Flag any medication conflicts
|
207 |
3. Note incomplete assessments
|
|
|
212 |
|
213 |
### Potential Oversights:
|
214 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
+
response = ""
|
217 |
+
try:
|
218 |
+
# Stream agent responses and update the last message in the conversation with each chunk.
|
219 |
+
for chunk in agent.run_gradio_chat(
|
220 |
+
message=analysis_prompt,
|
221 |
+
history=[],
|
222 |
+
temperature=0.2,
|
223 |
+
max_new_tokens=1024,
|
224 |
+
max_token=4096,
|
225 |
+
call_agent=False,
|
226 |
+
conversation=[]
|
227 |
+
):
|
228 |
+
if chunk is None:
|
229 |
+
continue
|
230 |
+
if isinstance(chunk, str):
|
231 |
+
response += chunk
|
232 |
+
elif isinstance(chunk, list):
|
233 |
+
response += "".join([c.content for c in chunk if hasattr(c, 'content')])
|
234 |
+
cleaned = response.replace("[TOOL_CALLS]", "").strip()
|
235 |
+
# Update the assistant message (last item in history) with the latest accumulated answer
|
236 |
+
history[-1] = {"role": "assistant", "content": cleaned}
|
237 |
+
yield history, None
|
238 |
+
except Exception as agent_error:
|
239 |
+
history[-1] = {"role": "assistant",
|
240 |
+
"content": f"❌ Analysis failed during processing: {str(agent_error)}"}
|
241 |
yield history, None
|
242 |
+
return
|
243 |
+
|
244 |
+
final_output = response.replace("[TOOL_CALLS]", "").strip()
|
245 |
+
if not final_output:
|
246 |
+
final_output = "No clear oversights identified. Recommend comprehensive review."
|
247 |
+
|
248 |
+
# Update the assistant's message with the final output
|
249 |
+
history[-1] = {"role": "assistant", "content": final_output}
|
250 |
+
|
251 |
+
report_path = None
|
252 |
+
if file_hash_value:
|
253 |
+
possible_report = os.path.join(report_dir, f"{file_hash_value}_report.txt")
|
254 |
+
if os.path.exists(possible_report):
|
255 |
+
report_path = possible_report
|
256 |
+
|
257 |
+
yield history, report_path
|
258 |
+
|
259 |
+
send_btn.click(analyze_potential_oversights,
|
260 |
+
inputs=[msg_input, gr.State([]), file_upload],
|
261 |
+
outputs=[chatbot, download_output])
|
262 |
+
msg_input.submit(analyze_potential_oversights,
|
263 |
+
inputs=[msg_input, gr.State([]), file_upload],
|
264 |
+
outputs=[chatbot, download_output])
|
265 |
+
gr.Examples([["What might have been missed in this patient's treatment?"],
|
266 |
+
["Are there any medication conflicts in these records?"],
|
267 |
+
["What abnormal results require follow-up?"]],
|
268 |
+
inputs=msg_input)
|
269 |
return demo
|
270 |
|
271 |
if __name__ == "__main__":
|
|
|
|
|
|
|
272 |
print("Launching interface...")
|
273 |
+
demo = create_ui()
|
274 |
demo.queue(api_open=False).launch(
|
275 |
server_name="0.0.0.0",
|
276 |
server_port=7860,
|