Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
import json
|
3 |
import gradio as gr
|
4 |
from typing import List
|
@@ -9,9 +12,7 @@ import re
|
|
9 |
import psutil
|
10 |
import subprocess
|
11 |
|
12 |
-
#
|
13 |
-
# Persistent directory setup
|
14 |
-
# ---------------------------------------------------------------------------------------
|
15 |
persistent_dir = "/data/hf_cache"
|
16 |
os.makedirs(persistent_dir, exist_ok=True)
|
17 |
|
@@ -36,13 +37,8 @@ sys.path.insert(0, src_path)
|
|
36 |
|
37 |
from txagent.txagent import TxAgent
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
# ---------------------------------------------------------------------------------------
|
42 |
-
MEDICAL_KEYWORDS = {
|
43 |
-
'diagnosis', 'assessment', 'plan', 'results', 'medications',
|
44 |
-
'allergies', 'summary', 'impression', 'findings', 'recommendations'
|
45 |
-
}
|
46 |
|
47 |
def sanitize_utf8(text: str) -> str:
|
48 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
@@ -60,7 +56,7 @@ def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
|
|
60 |
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
|
61 |
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
|
62 |
page_text = page.extract_text() or ""
|
63 |
-
if any(re.search(rf'
|
64 |
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
|
65 |
return "\n\n".join(text_chunks)
|
66 |
except Exception as e:
|
@@ -78,7 +74,7 @@ def convert_file_to_json(file_path: str, file_type: str) -> str:
|
|
78 |
text = extract_priority_pages(file_path)
|
79 |
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
80 |
elif file_type == "csv":
|
81 |
-
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
82 |
skip_blank_lines=False, on_bad_lines="skip")
|
83 |
content = df.fillna("").astype(str).values.tolist()
|
84 |
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
@@ -110,12 +106,11 @@ def log_system_usage(tag=""):
|
|
110 |
used, total, util = result.stdout.strip().split(", ")
|
111 |
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
|
112 |
except Exception as e:
|
113 |
-
print(f"[{tag}]
|
114 |
|
115 |
def init_agent():
|
116 |
print("π Initializing model...")
|
117 |
log_system_usage("Before Load")
|
118 |
-
|
119 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
120 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
121 |
if not os.path.exists(target_tool_path):
|
@@ -134,12 +129,8 @@ def init_agent():
|
|
134 |
agent.init_model()
|
135 |
log_system_usage("After Load")
|
136 |
print("β
Agent Ready")
|
137 |
-
|
138 |
return agent
|
139 |
|
140 |
-
# ---------------------------------------------------------------------------------------
|
141 |
-
# Gradio UI
|
142 |
-
# ---------------------------------------------------------------------------------------
|
143 |
def create_ui(agent):
|
144 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
145 |
gr.Markdown("<h1 style='text-align: center;'>π©Ί Clinical Oversight Assistant</h1>")
|
@@ -174,7 +165,7 @@ Medical Records:
|
|
174 |
|
175 |
### Potential Oversights:
|
176 |
"""
|
177 |
-
|
178 |
try:
|
179 |
for chunk in agent.run_gradio_chat(
|
180 |
message=prompt,
|
@@ -185,21 +176,23 @@ Medical Records:
|
|
185 |
call_agent=False,
|
186 |
conversation=[]
|
187 |
):
|
188 |
-
if chunk
|
|
|
189 |
if isinstance(chunk, str):
|
190 |
-
|
191 |
elif isinstance(chunk, list):
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
history[-1] = {"role": "assistant", "content":
|
196 |
yield history, None
|
197 |
except Exception as e:
|
198 |
history[-1] = {"role": "assistant", "content": f"β Error: {str(e)}"}
|
199 |
yield history, None
|
200 |
return
|
201 |
|
202 |
-
|
|
|
203 |
if not final_output:
|
204 |
final_output = "No clear oversights identified. Recommend comprehensive review."
|
205 |
history[-1] = {"role": "assistant", "content": final_output}
|
@@ -211,9 +204,6 @@ Medical Records:
|
|
211 |
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
212 |
return demo
|
213 |
|
214 |
-
# ---------------------------------------------------------------------------------------
|
215 |
-
# Launch
|
216 |
-
# ---------------------------------------------------------------------------------------
|
217 |
if __name__ == "__main__":
|
218 |
print("π Launching app...")
|
219 |
agent = init_agent()
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import pdfplumber
|
5 |
import json
|
6 |
import gradio as gr
|
7 |
from typing import List
|
|
|
12 |
import psutil
|
13 |
import subprocess
|
14 |
|
15 |
+
# Persistent directory
|
|
|
|
|
16 |
persistent_dir = "/data/hf_cache"
|
17 |
os.makedirs(persistent_dir, exist_ok=True)
|
18 |
|
|
|
37 |
|
38 |
from txagent.txagent import TxAgent
|
39 |
|
40 |
+
MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
|
41 |
+
'allergies', 'summary', 'impression', 'findings', 'recommendations'}
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def sanitize_utf8(text: str) -> str:
|
44 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
|
|
56 |
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
|
57 |
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
|
58 |
page_text = page.extract_text() or ""
|
59 |
+
if any(re.search(rf'\\b{kw}\\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
|
60 |
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
|
61 |
return "\n\n".join(text_chunks)
|
62 |
except Exception as e:
|
|
|
74 |
text = extract_priority_pages(file_path)
|
75 |
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
76 |
elif file_type == "csv":
|
77 |
+
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
78 |
skip_blank_lines=False, on_bad_lines="skip")
|
79 |
content = df.fillna("").astype(str).values.tolist()
|
80 |
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
|
|
106 |
used, total, util = result.stdout.strip().split(", ")
|
107 |
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
|
108 |
except Exception as e:
|
109 |
+
print(f"[{tag}] GPU/CPU monitor failed: {e}")
|
110 |
|
111 |
def init_agent():
|
112 |
print("π Initializing model...")
|
113 |
log_system_usage("Before Load")
|
|
|
114 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
115 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
116 |
if not os.path.exists(target_tool_path):
|
|
|
129 |
agent.init_model()
|
130 |
log_system_usage("After Load")
|
131 |
print("β
Agent Ready")
|
|
|
132 |
return agent
|
133 |
|
|
|
|
|
|
|
134 |
def create_ui(agent):
|
135 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
136 |
gr.Markdown("<h1 style='text-align: center;'>π©Ί Clinical Oversight Assistant</h1>")
|
|
|
165 |
|
166 |
### Potential Oversights:
|
167 |
"""
|
168 |
+
response_chunks = []
|
169 |
try:
|
170 |
for chunk in agent.run_gradio_chat(
|
171 |
message=prompt,
|
|
|
176 |
call_agent=False,
|
177 |
conversation=[]
|
178 |
):
|
179 |
+
if not chunk:
|
180 |
+
continue
|
181 |
if isinstance(chunk, str):
|
182 |
+
response_chunks.append(chunk)
|
183 |
elif isinstance(chunk, list):
|
184 |
+
response_chunks.extend([c.content for c in chunk if hasattr(c, 'content')])
|
185 |
+
partial_response = "".join(response_chunks)
|
186 |
+
cleaned_partial = partial_response.split("[TOOL_CALLS]")[0].strip()
|
187 |
+
history[-1] = {"role": "assistant", "content": cleaned_partial or "β³ Working..."}
|
188 |
yield history, None
|
189 |
except Exception as e:
|
190 |
history[-1] = {"role": "assistant", "content": f"β Error: {str(e)}"}
|
191 |
yield history, None
|
192 |
return
|
193 |
|
194 |
+
full_response = "".join(response_chunks)
|
195 |
+
final_output = full_response.split("[TOOL_CALLS]")[0].strip()
|
196 |
if not final_output:
|
197 |
final_output = "No clear oversights identified. Recommend comprehensive review."
|
198 |
history[-1] = {"role": "assistant", "content": final_output}
|
|
|
204 |
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
205 |
return demo
|
206 |
|
|
|
|
|
|
|
207 |
if __name__ == "__main__":
|
208 |
print("π Launching app...")
|
209 |
agent = init_agent()
|