Update app.py
Browse files
app.py
CHANGED
@@ -1,314 +1,242 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
import gradio as gr
|
4 |
-
from typing import List
|
5 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
6 |
import hashlib
|
7 |
-
import shutil
|
8 |
import time
|
9 |
-
|
10 |
-
from threading import Thread
|
11 |
import re
|
12 |
-
import
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
17 |
-
sys.path.insert(0, src_path)
|
18 |
-
|
19 |
-
# Cache directories
|
20 |
-
base_dir = "/data"
|
21 |
-
os.makedirs(base_dir, exist_ok=True)
|
22 |
-
model_cache_dir = os.path.join(base_dir, "txagent_models")
|
23 |
-
tool_cache_dir = os.path.join(base_dir, "tool_cache")
|
24 |
-
file_cache_dir = os.path.join(base_dir, "cache")
|
25 |
-
report_dir = "/data/reports"
|
26 |
-
vllm_cache_dir = os.path.join(base_dir, "vllm_cache")
|
27 |
-
|
28 |
-
os.makedirs(model_cache_dir, exist_ok=True)
|
29 |
-
os.makedirs(tool_cache_dir, exist_ok=True)
|
30 |
-
os.makedirs(file_cache_dir, exist_ok=True)
|
31 |
-
os.makedirs(report_dir, exist_ok=True)
|
32 |
-
os.makedirs(vllm_cache_dir, exist_ok=True)
|
33 |
|
|
|
34 |
os.environ.update({
|
35 |
-
"
|
36 |
-
"
|
37 |
-
"VLLM_CACHE_DIR": vllm_cache_dir,
|
38 |
"TOKENIZERS_PARALLELISM": "false",
|
39 |
"CUDA_LAUNCH_BLOCKING": "1"
|
40 |
})
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
48 |
|
49 |
-
|
50 |
-
return text.encode("utf-8", "ignore").decode("utf-8")
|
51 |
|
|
|
52 |
def file_hash(path: str) -> str:
|
53 |
with open(path, "rb") as f:
|
54 |
return hashlib.md5(f.read()).hexdigest()
|
55 |
|
56 |
-
def extract_priority_pages(file_path: str, max_pages: int =
|
57 |
try:
|
58 |
-
text_chunks = []
|
59 |
with pdfplumber.open(file_path) as pdf:
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
|
65 |
-
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
|
66 |
-
return "\n\n".join(text_chunks)
|
67 |
except Exception as e:
|
68 |
return f"PDF processing error: {str(e)}"
|
69 |
|
70 |
-
def
|
71 |
try:
|
72 |
h = file_hash(file_path)
|
73 |
-
cache_path =
|
|
|
74 |
if os.path.exists(cache_path):
|
75 |
-
|
76 |
-
|
|
|
77 |
if file_type == "pdf":
|
78 |
-
|
79 |
-
result = json.dumps({"filename": os.path.basename(file_path), "content":
|
80 |
-
Thread(target=full_pdf_processing, args=(file_path, h)).start()
|
81 |
-
|
82 |
elif file_type == "csv":
|
83 |
-
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str
|
84 |
-
|
85 |
-
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
86 |
-
|
87 |
elif file_type in ["xls", "xlsx"]:
|
88 |
-
|
89 |
-
|
90 |
-
except:
|
91 |
-
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
|
92 |
-
content = df.fillna("").astype(str).values.tolist()
|
93 |
-
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
94 |
-
|
95 |
else:
|
96 |
return json.dumps({"error": f"Unsupported file type: {file_type}"})
|
97 |
|
98 |
with open(cache_path, "w", encoding="utf-8") as f:
|
99 |
f.write(result)
|
100 |
return result
|
101 |
-
|
102 |
-
except Exception as e:
|
103 |
-
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
|
104 |
-
|
105 |
-
def full_pdf_processing(file_path: str, file_hash: str):
|
106 |
-
try:
|
107 |
-
cache_path = os.path.join(file_cache_dir, f"{file_hash}_full.json")
|
108 |
-
if os.path.exists(cache_path):
|
109 |
-
return
|
110 |
-
with pdfplumber.open(file_path) as pdf:
|
111 |
-
full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}" for i, page in enumerate(pdf.pages)])
|
112 |
-
result = json.dumps({"filename": os.path.basename(file_path), "content": full_text, "status": "complete"})
|
113 |
-
with open(cache_path, "w", encoding="utf-8") as f:
|
114 |
-
f.write(result)
|
115 |
-
with open(os.path.join(report_dir, f"{file_hash}_report.txt"), "w", encoding="utf-8") as out:
|
116 |
-
out.write(full_text)
|
117 |
except Exception as e:
|
118 |
-
|
119 |
-
|
120 |
-
def init_agent():
|
121 |
-
default_tool_path = os.path.abspath("data/new_tool.json")
|
122 |
-
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
123 |
-
if not os.path.exists(target_tool_path):
|
124 |
-
shutil.copy(default_tool_path, target_tool_path)
|
125 |
-
|
126 |
-
agent = TxAgent(
|
127 |
-
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
128 |
-
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
129 |
-
tool_files_dict={"new_tool": target_tool_path},
|
130 |
-
force_finish=True,
|
131 |
-
enable_checker=True,
|
132 |
-
step_rag_num=8,
|
133 |
-
seed=100,
|
134 |
-
additional_default_tools=[],
|
135 |
-
)
|
136 |
-
agent.init_model()
|
137 |
-
return agent
|
138 |
|
139 |
def format_response(response: str) -> str:
|
140 |
-
"""Clean and format the response for display"""
|
141 |
-
# Remove all tool call artifacts
|
142 |
response = response.replace("[TOOL_CALLS]", "").strip()
|
143 |
-
|
144 |
-
# Remove duplicate sections if they exist
|
145 |
if "Based on the medical records provided" in response:
|
146 |
parts = response.split("Based on the medical records provided")
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
formatted = formatted.replace("2. **Medication Conflicts**:", "\n### 💊 Medication Conflicts")
|
153 |
-
formatted = formatted.replace("3. **Incomplete Assessments**:", "\n### 📋 Incomplete Assessments")
|
154 |
-
formatted = formatted.replace("4. **Abnormal Results Needing Follow-up**:", "\n### ⚠️ Abnormal Results Needing Follow-up")
|
155 |
-
formatted = formatted.replace("Overall, the patient's medical records", "\n### 📝 Overall Assessment")
|
156 |
|
157 |
-
return
|
158 |
|
159 |
-
def
|
160 |
-
start_time = time.time()
|
161 |
try:
|
162 |
-
#
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
167 |
yield history, None
|
168 |
-
|
169 |
-
# Process
|
170 |
extracted_data = ""
|
171 |
-
|
172 |
-
if files and isinstance(files, list):
|
173 |
with ThreadPoolExecutor(max_workers=4) as executor:
|
174 |
-
futures = [executor.submit(
|
175 |
for f in files if hasattr(f, 'name')]
|
176 |
-
extracted_data = "\n".join(
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
analysis_prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
|
181 |
-
1. List potential missed diagnoses
|
182 |
-
2. Flag any medication conflicts
|
183 |
-
3. Note incomplete assessments
|
184 |
-
4. Highlight abnormal results needing follow-up
|
185 |
-
|
186 |
-
Medical Records:\n{extracted_data[:15000]}
|
187 |
|
188 |
-
|
|
|
|
|
|
|
|
|
189 |
|
190 |
-
|
191 |
-
|
|
|
192 |
for chunk in agent.run_gradio_chat(
|
193 |
-
message=
|
194 |
history=[],
|
195 |
temperature=0.2,
|
196 |
-
max_new_tokens=
|
197 |
-
max_token=
|
198 |
-
call_agent=False,
|
199 |
-
conversation=conversation
|
200 |
):
|
201 |
if isinstance(chunk, str):
|
202 |
-
|
203 |
elif isinstance(chunk, list):
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
formatted = format_response(full_response)
|
208 |
if formatted.strip():
|
209 |
-
history
|
210 |
yield history, None
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
if not final_output.strip():
|
215 |
-
final_output = "No clear oversights identified. Recommend comprehensive review."
|
216 |
-
|
217 |
-
# Prepare report download if available
|
218 |
-
report_path = None
|
219 |
-
if file_hash_value:
|
220 |
-
possible_report = os.path.join(report_dir, f"{file_hash_value}_report.txt")
|
221 |
-
if os.path.exists(possible_report):
|
222 |
-
report_path = possible_report
|
223 |
-
|
224 |
-
# Update history with final response
|
225 |
-
history = history[:-1] + [{"role": "assistant", "content": final_output}]
|
226 |
-
yield history, report_path
|
227 |
-
|
228 |
-
except Exception as e:
|
229 |
-
history.append({"role": "assistant", "content": f"❌ Analysis failed: {str(e)}"})
|
230 |
yield history, None
|
231 |
-
|
232 |
-
def create_ui(agent: TxAgent):
|
233 |
-
with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 900px !important}") as demo:
|
234 |
-
gr.Markdown("""
|
235 |
-
<div style='text-align: center;'>
|
236 |
-
<h1>🩺 Clinical Oversight Assistant</h1>
|
237 |
-
<h3>Identify potential oversights in patient care</h3>
|
238 |
-
<p>Upload medical records to analyze for missed diagnoses, medication conflicts, and other potential issues.</p>
|
239 |
-
</div>
|
240 |
-
""")
|
241 |
-
|
242 |
-
with gr.Row():
|
243 |
-
with gr.Column(scale=2):
|
244 |
-
file_upload = gr.File(
|
245 |
-
label="Upload Medical Records",
|
246 |
-
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
|
247 |
-
file_count="multiple",
|
248 |
-
height=100
|
249 |
-
)
|
250 |
-
msg_input = gr.Textbox(
|
251 |
-
placeholder="Ask about potential oversights...",
|
252 |
-
show_label=False,
|
253 |
-
lines=3,
|
254 |
-
max_lines=6
|
255 |
-
)
|
256 |
-
send_btn = gr.Button("Analyze", variant="primary", size="lg")
|
257 |
-
|
258 |
-
gr.Examples(
|
259 |
-
examples=[
|
260 |
-
["What might have been missed in this patient's treatment?"],
|
261 |
-
["Are there any medication conflicts in these records?"],
|
262 |
-
["What abnormal results require follow-up?"],
|
263 |
-
["Identify any incomplete assessments in these records"]
|
264 |
-
],
|
265 |
-
inputs=msg_input,
|
266 |
-
label="Example Queries"
|
267 |
-
)
|
268 |
-
|
269 |
-
with gr.Column(scale=3):
|
270 |
-
chatbot = gr.Chatbot(
|
271 |
-
label="Analysis Results",
|
272 |
-
height=600,
|
273 |
-
show_copy_button=True,
|
274 |
-
avatar_images=(
|
275 |
-
"assets/user.png",
|
276 |
-
"assets/doctor.png"
|
277 |
-
)
|
278 |
-
)
|
279 |
-
download_output = gr.File(
|
280 |
-
label="Download Full Report",
|
281 |
-
visible=False
|
282 |
-
)
|
283 |
-
|
284 |
-
conversation_state = gr.State([])
|
285 |
-
|
286 |
-
inputs = [msg_input, chatbot, conversation_state, file_upload]
|
287 |
-
outputs = [chatbot, download_output]
|
288 |
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
outputs=outputs
|
293 |
-
)
|
294 |
-
msg_input.submit(
|
295 |
-
analyze_potential_oversights,
|
296 |
-
inputs=inputs,
|
297 |
-
outputs=outputs
|
298 |
-
)
|
299 |
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
if __name__ == "__main__":
|
303 |
-
|
304 |
-
agent = init_agent()
|
305 |
-
|
306 |
-
print("Launching interface...")
|
307 |
-
demo = create_ui(agent)
|
308 |
-
demo.queue().launch(
|
309 |
server_name="0.0.0.0",
|
310 |
server_port=7860,
|
311 |
-
show_error=True
|
312 |
-
allowed_paths=["/data/reports"],
|
313 |
-
share=False
|
314 |
)
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
import gradio as gr
|
4 |
+
from typing import List
|
|
|
5 |
import hashlib
|
|
|
6 |
import time
|
7 |
+
import json
|
|
|
8 |
import re
|
9 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
10 |
+
from threading import Thread
|
11 |
+
import pandas as pd
|
12 |
+
import pdfplumber
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Optimized environment setup
|
15 |
os.environ.update({
|
16 |
+
"HF_HOME": "/data/hf_cache",
|
17 |
+
"VLLM_CACHE_DIR": "/data/vllm_cache",
|
|
|
18 |
"TOKENIZERS_PARALLELISM": "false",
|
19 |
"CUDA_LAUNCH_BLOCKING": "1"
|
20 |
})
|
21 |
|
22 |
+
# Create cache directories if they don't exist
|
23 |
+
os.makedirs("/data/hf_cache", exist_ok=True)
|
24 |
+
os.makedirs("/data/tool_cache", exist_ok=True)
|
25 |
+
os.makedirs("/data/file_cache", exist_ok=True)
|
26 |
+
os.makedirs("/data/reports", exist_ok=True)
|
27 |
+
os.makedirs("/data/vllm_cache", exist_ok=True)
|
28 |
+
|
29 |
+
# Lazy loading of heavy dependencies
|
30 |
+
def lazy_load_agent():
|
31 |
+
from txagent.txagent import TxAgent
|
32 |
+
|
33 |
+
# Initialize agent with optimized settings
|
34 |
+
agent = TxAgent(
|
35 |
+
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
36 |
+
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
37 |
+
tool_files_dict={"new_tool": "/data/tool_cache/new_tool.json"},
|
38 |
+
force_finish=True,
|
39 |
+
enable_checker=True,
|
40 |
+
step_rag_num=8,
|
41 |
+
seed=100,
|
42 |
+
additional_default_tools=[],
|
43 |
+
)
|
44 |
+
agent.init_model()
|
45 |
+
return agent
|
46 |
|
47 |
+
# Pre-load the agent in a separate thread
|
48 |
+
agent = None
|
49 |
+
def preload_agent():
|
50 |
+
global agent
|
51 |
+
agent = lazy_load_agent()
|
52 |
|
53 |
+
Thread(target=preload_agent).start()
|
|
|
54 |
|
55 |
+
# File processing functions
|
56 |
def file_hash(path: str) -> str:
|
57 |
with open(path, "rb") as f:
|
58 |
return hashlib.md5(f.read()).hexdigest()
|
59 |
|
60 |
+
def extract_priority_pages(file_path: str, max_pages: int = 10) -> str:
|
61 |
try:
|
|
|
62 |
with pdfplumber.open(file_path) as pdf:
|
63 |
+
return "\n\n".join(
|
64 |
+
f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}"
|
65 |
+
for i, page in enumerate(pdf.pages[:max_pages])
|
66 |
+
)
|
|
|
|
|
|
|
67 |
except Exception as e:
|
68 |
return f"PDF processing error: {str(e)}"
|
69 |
|
70 |
+
def process_file(file_path: str, file_type: str) -> str:
|
71 |
try:
|
72 |
h = file_hash(file_path)
|
73 |
+
cache_path = f"/data/file_cache/{h}.json"
|
74 |
+
|
75 |
if os.path.exists(cache_path):
|
76 |
+
with open(cache_path, "r", encoding="utf-8") as f:
|
77 |
+
return f.read()
|
78 |
+
|
79 |
if file_type == "pdf":
|
80 |
+
content = extract_priority_pages(file_path)
|
81 |
+
result = json.dumps({"filename": os.path.basename(file_path), "content": content})
|
|
|
|
|
82 |
elif file_type == "csv":
|
83 |
+
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str)
|
84 |
+
result = json.dumps({"filename": os.path.basename(file_path), "rows": df.fillna("").values.tolist()})
|
|
|
|
|
85 |
elif file_type in ["xls", "xlsx"]:
|
86 |
+
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
|
87 |
+
result = json.dumps({"filename": os.path.basename(file_path), "rows": df.fillna("").values.tolist()})
|
|
|
|
|
|
|
|
|
|
|
88 |
else:
|
89 |
return json.dumps({"error": f"Unsupported file type: {file_type}"})
|
90 |
|
91 |
with open(cache_path, "w", encoding="utf-8") as f:
|
92 |
f.write(result)
|
93 |
return result
|
94 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
except Exception as e:
|
96 |
+
return json.dumps({"error": str(e)})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
def format_response(response: str) -> str:
|
|
|
|
|
99 |
response = response.replace("[TOOL_CALLS]", "").strip()
|
|
|
|
|
100 |
if "Based on the medical records provided" in response:
|
101 |
parts = response.split("Based on the medical records provided")
|
102 |
+
response = "Based on the medical records provided" + parts[-1]
|
103 |
+
|
104 |
+
replacements = {
|
105 |
+
"1. **Missed Diagnoses**:": "### 🔍 Missed Diagnoses",
|
106 |
+
"2. **Medication Conflicts**:": "\n### 💊 Medication Conflicts",
|
107 |
+
"3. **Incomplete Assessments**:": "\n### 📋 Incomplete Assessments",
|
108 |
+
"4. **Abnormal Results Needing Follow-up**:": "\n### ⚠️ Abnormal Results Needing Follow-up",
|
109 |
+
"Overall, the patient's medical records": "\n### 📝 Overall Assessment"
|
110 |
+
}
|
111 |
|
112 |
+
for old, new in replacements.items():
|
113 |
+
response = response.replace(old, new)
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
return response
|
116 |
|
117 |
+
def analyze_files(message: str, history: List, files: List):
|
|
|
118 |
try:
|
119 |
+
# Wait for agent to load if not ready
|
120 |
+
while agent is None:
|
121 |
+
time.sleep(0.1)
|
122 |
+
|
123 |
+
# Append user message to history in correct format
|
124 |
+
history.append([message, None])
|
125 |
yield history, None
|
126 |
+
|
127 |
+
# Process files in parallel
|
128 |
extracted_data = ""
|
129 |
+
if files:
|
|
|
130 |
with ThreadPoolExecutor(max_workers=4) as executor:
|
131 |
+
futures = [executor.submit(process_file, f.name, f.name.split(".")[-1].lower())
|
132 |
for f in files if hasattr(f, 'name')]
|
133 |
+
extracted_data = "\n".join(f.result() for f in as_completed(futures))
|
134 |
+
|
135 |
+
prompt = f"""Review these medical records:
|
136 |
+
{extracted_data[:10000]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
Identify:
|
139 |
+
1. Potential missed diagnoses
|
140 |
+
2. Medication conflicts
|
141 |
+
3. Incomplete assessments
|
142 |
+
4. Abnormal results needing follow-up
|
143 |
|
144 |
+
Analysis:"""
|
145 |
+
|
146 |
+
response = ""
|
147 |
for chunk in agent.run_gradio_chat(
|
148 |
+
message=prompt,
|
149 |
history=[],
|
150 |
temperature=0.2,
|
151 |
+
max_new_tokens=800,
|
152 |
+
max_token=3000
|
|
|
|
|
153 |
):
|
154 |
if isinstance(chunk, str):
|
155 |
+
response += chunk
|
156 |
elif isinstance(chunk, list):
|
157 |
+
response += "".join(getattr(c, 'content', '') for c in chunk)
|
158 |
+
|
159 |
+
formatted = format_response(response)
|
|
|
160 |
if formatted.strip():
|
161 |
+
history[-1][1] = formatted
|
162 |
yield history, None
|
163 |
+
|
164 |
+
final_output = format_response(response) or "No clear oversights identified."
|
165 |
+
history[-1][1] = final_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
yield history, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
except Exception as e:
|
169 |
+
history[-1][1] = f"❌ Error: {str(e)}"
|
170 |
+
yield history, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
# Create optimized UI with better layout
|
173 |
+
with gr.Blocks(title="Clinical Oversight Assistant", css="""
|
174 |
+
.gradio-container {
|
175 |
+
max-width: 1200px !important;
|
176 |
+
margin: auto;
|
177 |
+
}
|
178 |
+
.container {
|
179 |
+
max-width: 1200px !important;
|
180 |
+
}
|
181 |
+
.chatbot {
|
182 |
+
min-height: 500px;
|
183 |
+
}
|
184 |
+
""") as demo:
|
185 |
+
gr.Markdown("""
|
186 |
+
<div style='text-align: center; margin-bottom: 20px;'>
|
187 |
+
<h1 style='margin-bottom: 10px;'>🩺 Clinical Oversight Assistant</h1>
|
188 |
+
<p>Upload medical records to analyze for potential oversights in patient care</p>
|
189 |
+
</div>
|
190 |
+
""")
|
191 |
+
|
192 |
+
with gr.Row():
|
193 |
+
with gr.Column(scale=1, min_width=400):
|
194 |
+
file_upload = gr.File(
|
195 |
+
label="Upload Medical Records",
|
196 |
+
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
|
197 |
+
file_count="multiple",
|
198 |
+
height=100
|
199 |
+
)
|
200 |
+
query = gr.Textbox(
|
201 |
+
label="Your Query",
|
202 |
+
placeholder="Ask about potential oversights...",
|
203 |
+
lines=3
|
204 |
+
)
|
205 |
+
submit = gr.Button("Analyze", variant="primary")
|
206 |
+
|
207 |
+
gr.Examples(
|
208 |
+
examples=[
|
209 |
+
["What potential diagnoses might have been missed?"],
|
210 |
+
["Are there any medication conflicts I should be aware of?"],
|
211 |
+
["What assessments appear incomplete in these records?"]
|
212 |
+
],
|
213 |
+
inputs=query,
|
214 |
+
label="Example Queries"
|
215 |
+
)
|
216 |
+
|
217 |
+
with gr.Column(scale=2, min_width=600):
|
218 |
+
chatbot = gr.Chatbot(
|
219 |
+
label="Analysis Results",
|
220 |
+
height=600,
|
221 |
+
bubble_full_width=False,
|
222 |
+
show_copy_button=True
|
223 |
+
)
|
224 |
+
|
225 |
+
submit.click(
|
226 |
+
analyze_files,
|
227 |
+
inputs=[query, chatbot, file_upload],
|
228 |
+
outputs=[chatbot, gr.File(visible=False)]
|
229 |
+
)
|
230 |
+
|
231 |
+
query.submit(
|
232 |
+
analyze_files,
|
233 |
+
inputs=[query, chatbot, file_upload],
|
234 |
+
outputs=[chatbot, gr.File(visible=False)]
|
235 |
+
)
|
236 |
|
237 |
if __name__ == "__main__":
|
238 |
+
demo.queue(concurrency_count=1).launch(
|
|
|
|
|
|
|
|
|
|
|
239 |
server_name="0.0.0.0",
|
240 |
server_port=7860,
|
241 |
+
show_error=True
|
|
|
|
|
242 |
)
|