Update app.py
Browse files
app.py
CHANGED
@@ -8,13 +8,12 @@ from typing import List
|
|
8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
import shutil
|
11 |
-
import time
|
12 |
import re
|
13 |
import psutil
|
14 |
import subprocess
|
15 |
|
16 |
# ---------------------------------------------------------------------------------------
|
17 |
-
# Persistent directory
|
18 |
# ---------------------------------------------------------------------------------------
|
19 |
persistent_dir = "/data/hf_cache"
|
20 |
os.makedirs(persistent_dir, exist_ok=True)
|
@@ -34,9 +33,6 @@ os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
|
|
34 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
35 |
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
36 |
|
37 |
-
# ---------------------------------------------------------------------------------------
|
38 |
-
# Add src to path
|
39 |
-
# ---------------------------------------------------------------------------------------
|
40 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
41 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
42 |
sys.path.insert(0, src_path)
|
@@ -44,7 +40,7 @@ sys.path.insert(0, src_path)
|
|
44 |
from txagent.txagent import TxAgent
|
45 |
|
46 |
# ---------------------------------------------------------------------------------------
|
47 |
-
#
|
48 |
# ---------------------------------------------------------------------------------------
|
49 |
MEDICAL_KEYWORDS = {
|
50 |
'diagnosis', 'assessment', 'plan', 'results', 'medications',
|
@@ -106,25 +102,22 @@ def convert_file_to_json(file_path: str, file_type: str) -> str:
|
|
106 |
|
107 |
def log_system_usage(tag=""):
|
108 |
try:
|
109 |
-
|
110 |
mem = psutil.virtual_memory()
|
111 |
-
print(f"[{tag}]
|
112 |
result = subprocess.run(
|
113 |
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
|
114 |
-
capture_output=True,
|
115 |
-
text=True,
|
116 |
)
|
117 |
if result.returncode == 0:
|
118 |
-
|
119 |
-
print(f"[{tag}]
|
120 |
-
else:
|
121 |
-
print(f"[{tag}] ⚡ GPU info not available.")
|
122 |
except Exception as e:
|
123 |
-
print(f"[{tag}] ⚠️
|
124 |
|
125 |
def init_agent():
|
126 |
-
print("🔁 Initializing
|
127 |
-
log_system_usage("Before
|
128 |
|
129 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
130 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
@@ -142,13 +135,8 @@ def init_agent():
|
|
142 |
additional_default_tools=[],
|
143 |
)
|
144 |
agent.init_model()
|
145 |
-
log_system_usage("After
|
146 |
-
|
147 |
-
print("✅ TxAgent is ready.")
|
148 |
-
print("📦 Cached model files:")
|
149 |
-
for root, _, files in os.walk(model_cache_dir):
|
150 |
-
for file in files:
|
151 |
-
print(os.path.join(root, file))
|
152 |
|
153 |
return agent
|
154 |
|
@@ -157,53 +145,42 @@ def init_agent():
|
|
157 |
# ---------------------------------------------------------------------------------------
|
158 |
def create_ui(agent):
|
159 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
160 |
-
gr.Markdown(""
|
161 |
-
<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>
|
162 |
-
<h3 style='text-align: center;'>Identify potential oversights in patient care</h3>
|
163 |
-
""")
|
164 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
165 |
-
file_upload = gr.File(
|
166 |
-
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
|
167 |
-
file_count="multiple")
|
168 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
169 |
send_btn = gr.Button("Analyze", variant="primary")
|
170 |
download_output = gr.File(label="Download Full Report")
|
171 |
|
172 |
-
def
|
173 |
history = history + [{"role": "user", "content": message},
|
174 |
{"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}]
|
175 |
yield history, None
|
176 |
|
177 |
-
|
178 |
file_hash_value = ""
|
179 |
-
if files
|
180 |
with ThreadPoolExecutor(max_workers=4) as executor:
|
181 |
-
futures = [
|
182 |
-
executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower())
|
183 |
-
for f in files if hasattr(f, 'name')
|
184 |
-
]
|
185 |
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
|
186 |
-
|
187 |
-
file_hash_value = file_hash(files[0].name)
|
188 |
|
189 |
-
|
190 |
-
truncated_data = extracted_data[:max_extracted_chars]
|
191 |
-
|
192 |
-
analysis_prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
|
193 |
1. List potential missed diagnoses
|
194 |
2. Flag any medication conflicts
|
195 |
3. Note incomplete assessments
|
196 |
4. Highlight abnormal results needing follow-up
|
197 |
|
198 |
Medical Records:
|
199 |
-
{
|
200 |
|
201 |
### Potential Oversights:
|
202 |
"""
|
203 |
response = ""
|
204 |
try:
|
205 |
for chunk in agent.run_gradio_chat(
|
206 |
-
message=
|
207 |
history=[],
|
208 |
temperature=0.2,
|
209 |
max_new_tokens=1024,
|
@@ -216,46 +193,32 @@ Medical Records:
|
|
216 |
response += chunk
|
217 |
elif isinstance(chunk, list):
|
218 |
response += "".join([c.content for c in chunk if hasattr(c, 'content')])
|
219 |
-
cleaned = response.
|
220 |
-
|
|
|
221 |
yield history, None
|
222 |
-
except Exception as
|
223 |
-
history[-1] = {"role": "assistant", "content": f"❌
|
224 |
yield history, None
|
225 |
return
|
226 |
|
227 |
-
final_output =
|
228 |
if not final_output:
|
229 |
final_output = "No clear oversights identified. Recommend comprehensive review."
|
230 |
-
|
231 |
history[-1] = {"role": "assistant", "content": final_output}
|
232 |
|
233 |
-
report_path = None
|
234 |
-
if
|
235 |
-
possible_report = os.path.join(report_dir, f"{file_hash_value}_report.txt")
|
236 |
-
if os.path.exists(possible_report):
|
237 |
-
report_path = possible_report
|
238 |
-
|
239 |
-
yield history, report_path
|
240 |
|
241 |
-
send_btn.click(
|
242 |
-
|
243 |
-
outputs=[chatbot, download_output])
|
244 |
-
msg_input.submit(analyze_potential_oversights,
|
245 |
-
inputs=[msg_input, gr.State([]), file_upload],
|
246 |
-
outputs=[chatbot, download_output])
|
247 |
-
gr.Examples([
|
248 |
-
["What might have been missed in this patient's treatment?"],
|
249 |
-
["Are there any medication conflicts in these records?"],
|
250 |
-
["What abnormal results require follow-up?"]],
|
251 |
-
inputs=msg_input)
|
252 |
return demo
|
253 |
|
254 |
# ---------------------------------------------------------------------------------------
|
255 |
# Launch
|
256 |
# ---------------------------------------------------------------------------------------
|
257 |
if __name__ == "__main__":
|
258 |
-
print("🚀
|
259 |
agent = init_agent()
|
260 |
demo = create_ui(agent)
|
261 |
demo.queue(api_open=False).launch(
|
|
|
8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
import shutil
|
|
|
11 |
import re
|
12 |
import psutil
|
13 |
import subprocess
|
14 |
|
15 |
# ---------------------------------------------------------------------------------------
|
16 |
+
# Persistent directory setup
|
17 |
# ---------------------------------------------------------------------------------------
|
18 |
persistent_dir = "/data/hf_cache"
|
19 |
os.makedirs(persistent_dir, exist_ok=True)
|
|
|
33 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
34 |
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
35 |
|
|
|
|
|
|
|
36 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
37 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
38 |
sys.path.insert(0, src_path)
|
|
|
40 |
from txagent.txagent import TxAgent
|
41 |
|
42 |
# ---------------------------------------------------------------------------------------
|
43 |
+
# Utilities
|
44 |
# ---------------------------------------------------------------------------------------
|
45 |
MEDICAL_KEYWORDS = {
|
46 |
'diagnosis', 'assessment', 'plan', 'results', 'medications',
|
|
|
102 |
|
103 |
def log_system_usage(tag=""):
|
104 |
try:
|
105 |
+
cpu = psutil.cpu_percent(interval=1)
|
106 |
mem = psutil.virtual_memory()
|
107 |
+
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
|
108 |
result = subprocess.run(
|
109 |
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
|
110 |
+
capture_output=True, text=True
|
|
|
111 |
)
|
112 |
if result.returncode == 0:
|
113 |
+
used, total, util = result.stdout.strip().split(", ")
|
114 |
+
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
|
|
|
|
|
115 |
except Exception as e:
|
116 |
+
print(f"[{tag}] ⚠️ GPU/CPU monitor failed: {e}")
|
117 |
|
118 |
def init_agent():
|
119 |
+
print("🔁 Initializing model...")
|
120 |
+
log_system_usage("Before Load")
|
121 |
|
122 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
123 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
|
|
135 |
additional_default_tools=[],
|
136 |
)
|
137 |
agent.init_model()
|
138 |
+
log_system_usage("After Load")
|
139 |
+
print("✅ Agent Ready")
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
return agent
|
142 |
|
|
|
145 |
# ---------------------------------------------------------------------------------------
|
146 |
def create_ui(agent):
|
147 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
148 |
+
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
|
|
|
|
|
|
149 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
150 |
+
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
|
|
|
|
151 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
152 |
send_btn = gr.Button("Analyze", variant="primary")
|
153 |
download_output = gr.File(label="Download Full Report")
|
154 |
|
155 |
+
def analyze(message: str, history: list, files: list):
|
156 |
history = history + [{"role": "user", "content": message},
|
157 |
{"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}]
|
158 |
yield history, None
|
159 |
|
160 |
+
extracted = ""
|
161 |
file_hash_value = ""
|
162 |
+
if files:
|
163 |
with ThreadPoolExecutor(max_workers=4) as executor:
|
164 |
+
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
|
|
|
|
|
|
|
165 |
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
|
166 |
+
extracted = "\n".join(results)
|
167 |
+
file_hash_value = file_hash(files[0].name)
|
168 |
|
169 |
+
prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
|
|
|
|
|
|
|
170 |
1. List potential missed diagnoses
|
171 |
2. Flag any medication conflicts
|
172 |
3. Note incomplete assessments
|
173 |
4. Highlight abnormal results needing follow-up
|
174 |
|
175 |
Medical Records:
|
176 |
+
{extracted[:12000]}
|
177 |
|
178 |
### Potential Oversights:
|
179 |
"""
|
180 |
response = ""
|
181 |
try:
|
182 |
for chunk in agent.run_gradio_chat(
|
183 |
+
message=prompt,
|
184 |
history=[],
|
185 |
temperature=0.2,
|
186 |
max_new_tokens=1024,
|
|
|
193 |
response += chunk
|
194 |
elif isinstance(chunk, list):
|
195 |
response += "".join([c.content for c in chunk if hasattr(c, 'content')])
|
196 |
+
cleaned = response.strip()
|
197 |
+
cleaned = re.sub(r"\[TOOL_CALLS\].*?$", "", cleaned, flags=re.DOTALL).strip()
|
198 |
+
history[-1] = {"role": "assistant", "content": cleaned or "⏳ Processing..."}
|
199 |
yield history, None
|
200 |
+
except Exception as e:
|
201 |
+
history[-1] = {"role": "assistant", "content": f"❌ Error: {str(e)}"}
|
202 |
yield history, None
|
203 |
return
|
204 |
|
205 |
+
final_output = re.sub(r"\[TOOL_CALLS\].*?$", "", response, flags=re.DOTALL).strip()
|
206 |
if not final_output:
|
207 |
final_output = "No clear oversights identified. Recommend comprehensive review."
|
|
|
208 |
history[-1] = {"role": "assistant", "content": final_output}
|
209 |
|
210 |
+
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
211 |
+
yield history, report_path if report_path and os.path.exists(report_path) else None
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
+
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
214 |
+
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
return demo
|
216 |
|
217 |
# ---------------------------------------------------------------------------------------
|
218 |
# Launch
|
219 |
# ---------------------------------------------------------------------------------------
|
220 |
if __name__ == "__main__":
|
221 |
+
print("🚀 Launching app...")
|
222 |
agent = init_agent()
|
223 |
demo = create_ui(agent)
|
224 |
demo.queue(api_open=False).launch(
|