File size: 17,380 Bytes
f394b25
 
 
 
 
 
d88209d
e12aa83
f394b25
 
 
 
6b4b480
f394b25
 
 
 
a71a831
d88209d
 
 
 
f394b25
a71a831
f394b25
 
 
d88209d
 
dda4a06
5d37db7
dda4a06
5d37db7
dda4a06
d88209d
 
a71a831
 
 
 
 
 
 
 
 
 
 
 
d88209d
 
 
 
 
 
 
3cd3468
c10ba83
 
 
fcebf54
c10ba83
3cd3468
a71a831
 
 
d88209d
 
 
 
a71a831
 
 
 
d88209d
a71a831
d88209d
 
 
 
5d37db7
d88209d
 
5d37db7
dda4a06
5d37db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d88209d
 
5d37db7
828effe
5d37db7
a71a831
5d37db7
a71a831
 
 
5d37db7
a71a831
d88209d
5d37db7
d88209d
 
 
f394b25
5d37db7
 
d88209d
 
 
5d37db7
 
 
 
dda4a06
5d37db7
 
 
 
d88209d
 
 
 
 
 
5d37db7
a71a831
d88209d
5d37db7
a71a831
d88209d
 
dda4a06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d88209d
dda4a06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d88209d
dda4a06
 
d88209d
 
a71a831
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71a831
d88209d
 
 
a71a831
5d37db7
d88209d
 
5d37db7
d88209d
 
5d37db7
8a7f6db
d88209d
 
 
a71a831
d88209d
a71a831
dda4a06
 
a71a831
 
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e27edaa
d88209d
 
 
 
 
 
 
 
 
 
 
8a7f6db
d88209d
a71a831
 
d88209d
a71a831
 
 
 
 
e12aa83
 
 
 
 
 
 
 
 
a71a831
e12aa83
a71a831
e12aa83
a71a831
e12aa83
d88209d
dda4a06
a71a831
 
 
 
d88209d
 
 
 
 
dda4a06
 
d88209d
 
 
 
 
 
 
 
e12aa83
4cf6d2e
a71a831
 
d88209d
a71a831
d88209d
f394b25
d88209d
 
 
 
 
 
dda4a06
 
d88209d
 
dda4a06
 
 
 
 
 
 
 
 
 
d88209d
 
e12aa83
5d37db7
dda4a06
 
 
 
 
 
 
 
9569e68
5d37db7
d88209d
 
 
a71a831
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda4a06
d88209d
 
 
 
 
 
 
dda4a06
 
d88209d
dda4a06
 
 
 
 
9569e68
dda4a06
 
9569e68
d88209d
 
 
 
8a7f6db
dda4a06
 
 
4cf6d2e
a71a831
d88209d
a71a831
dda4a06
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71a831
55e3db0
f394b25
 
dda4a06
e12aa83
 
dda4a06
f394b25
 
dda4a06
f394b25
d88209d
 
dda4a06
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Optional, Generator
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
from transformers import AutoTokenizer
from functools import lru_cache
import numpy as np
from difflib import SequenceMatcher

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
MAX_TOKENS = 1800
BATCH_SIZE = 1
MAX_WORKERS = 2
CHUNK_SIZE = 5
MODEL_MAX_TOKENS = 131072
MAX_TEXT_LENGTH = 500000

# Persistent directory setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ.update({
    "HF_HOME": model_cache_dir,
    "TRANSFORMERS_CACHE": model_cache_dir,
    "VLLM_CACHE_DIR": vllm_cache_dir,
    "TOKENIZERS_PARALLELISM": "false",
    "CUDA_LAUNCH_BLOCKING": "1"
})

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)

@lru_cache(maxsize=1)
def get_tokenizer():
    return AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    hash_md5 = hashlib.md5()
    with open(path, "rb") as f:
        for chunk in iter(lambda: f.read(4096), b""):
            hash_md5.update(chunk)
    return hash_md5.hexdigest()

def extract_pdf_page(page, tokenizer, max_tokens=MAX_TOKENS) -> List[str]:
    try:
        text = page.extract_text() or ""
        text = sanitize_utf8(text)
        if len(text) > MAX_TEXT_LENGTH // 10:
            text = text[:MAX_TEXT_LENGTH // 10]
        
        tokens = tokenizer.encode(text, add_special_tokens=False)
        if len(tokens) > max_tokens:
            chunks = []
            current_chunk = []
            current_length = 0
            for token in tokens:
                if current_length + 1 > max_tokens:
                    chunks.append(tokenizer.decode(current_chunk))
                    current_chunk = [token]
                    current_length = 1
                else:
                    current_chunk.append(token)
                    current_length += 1
            if current_chunk:
                chunks.append(tokenizer.decode(current_chunk))
            return [f"=== Page {page.page_number} ===\n{c}" for c in chunks]
        return [f"=== Page {page.page_number} ===\n{text}"]
    except Exception as e:
        logger.warning(f"Error extracting page {page.page_number}: {str(e)}")
        return []

def extract_all_pages(file_path: str, progress_callback=None) -> List[str]:
    try:
        tokenizer = get_tokenizer()
        with pdfplumber.open(file_path) as pdf:
            total_pages = len(pdf.pages)
            if total_pages == 0:
                return []

        results = []
        total_tokens = 0
        for chunk_start in range(0, total_pages, CHUNK_SIZE):
            chunk_end = min(chunk_start + CHUNK_SIZE, total_pages)
            
            with pdfplumber.open(file_path) as pdf:
                with ThreadPoolExecutor(max_workers=min(CHUNK_SIZE, 2)) as executor:
                    futures = [executor.submit(extract_pdf_page, pdf.pages[i], tokenizer) 
                             for i in range(chunk_start, chunk_end)]
                    
                    for future in as_completed(futures):
                        page_chunks = future.result()
                        for chunk in page_chunks:
                            chunk_tokens = len(tokenizer.encode(chunk, add_special_tokens=False))
                            if total_tokens + chunk_tokens > MODEL_MAX_TOKENS:
                                logger.warning(f"Total tokens exceed model limit. Stopping.")
                                return results
                            results.append(chunk)
                            total_tokens += chunk_tokens
                    
                    if progress_callback:
                        progress_callback(min(chunk_end, total_pages), total_pages)
            
            del pdf
            gc.collect()
        
        return results
    except Exception as e:
        logger.error(f"PDF processing error: {e}")
        return [f"PDF processing error: {str(e)}"]

def excel_to_json(file_path: str) -> List[Dict]:
    try:
        # Try with openpyxl first
        try:
            with pd.ExcelFile(file_path, engine='openpyxl') as excel_file:
                sheets = excel_file.sheet_names
                results = []
                for sheet_name in sheets:
                    df = pd.read_excel(
                        excel_file,
                        sheet_name=sheet_name,
                        header=None,
                        dtype=str,
                        na_filter=False
                    )
                    if not df.empty:
                        results.append({
                            "filename": f"{os.path.basename(file_path)} - {sheet_name}",
                            "rows": df.values.tolist(),
                            "type": "excel"
                        })
                return results if results else [{"error": "No data found in any sheet"}]
        except Exception as openpyxl_error:
            # Fallback to xlrd
            try:
                with pd.ExcelFile(file_path, engine='xlrd') as excel_file:
                    sheets = excel_file.sheet_names
                    results = []
                    for sheet_name in sheets:
                        df = pd.read_excel(
                            excel_file,
                            sheet_name=sheet_name,
                            header=None,
                            dtype=str,
                            na_filter=False
                        )
                        if not df.empty:
                            results.append({
                                "filename": f"{os.path.basename(file_path)} - {sheet_name}",
                                "rows": df.values.tolist(),
                                "type": "excel"
                            })
                    return results if results else [{"error": "No data found in any sheet"}]
            except Exception as xlrd_error:
                logger.error(f"Excel processing failed: {xlrd_error}")
                return [{"error": f"Excel processing failed: {str(xlrd_error)}"}]
    except Exception as e:
        logger.error(f"Excel file opening error: {e}")
        return [{"error": f"Excel file opening error: {str(e)}"}]

def csv_to_json(file_path: str) -> List[Dict]:
    try:
        chunks = []
        for chunk in pd.read_csv(
            file_path,
            header=None,
            dtype=str,
            encoding_errors='replace',
            on_bad_lines='skip',
            chunksize=10000,
            na_filter=False
        ):
            chunks.append(chunk)
        
        df = pd.concat(chunks) if chunks else pd.DataFrame()
        return [{
            "filename": os.path.basename(file_path),
            "rows": df.values.tolist(),
            "type": "csv"
        }]
    except Exception as e:
        logger.error(f"CSV processing error: {e}")
        return [{"error": f"CSV processing error: {str(e)}"}]

@lru_cache(maxsize=100)
def process_file_cached(file_path: str, file_type: str) -> List[Dict]:
    try:
        if file_type == "pdf":
            chunks = extract_all_pages(file_path)
            return [{
                "filename": os.path.basename(file_path),
                "content": chunk,
                "status": "initial",
                "type": "pdf"
            } for chunk in chunks]
        elif file_type in ["xls", "xlsx"]:
            return excel_to_json(file_path)
        elif file_type == "csv":
            return csv_to_json(file_path)
        else:
            return [{"error": f"Unsupported file type: {file_type}"}]
    except Exception as e:
        logger.error(f"Error processing file: {e}")
        return [{"error": f"Error processing file: {str(e)}"}]

def clean_response(text: str) -> str:
    if not text:
        return ""
    
    patterns = [
        (re.compile(r"\[.*?\]|\bNone\b", re.IGNORECASE), ""),
        (re.compile(r"\s+"), " "),
        (re.compile(r"[^\w\s\.\,\(\)\-]"), ""),
    ]
    
    for pattern, repl in patterns:
        text = pattern.sub(repl, text)
    
    sentences = text.split(". ")
    unique_sentences = []
    seen = set()
    
    for s in sentences:
        if not s:
            continue
        is_unique = True
        for seen_s in seen:
            if SequenceMatcher(None, s.lower(), seen_s.lower()).ratio() > 0.9:
                is_unique = False
                break
        if is_unique:
            unique_sentences.append(s)
            seen.add(s)
    
    text = ". ".join(unique_sentences).strip()
    return text if text else "No missed diagnoses identified."

@lru_cache(maxsize=1)
def init_agent():
    logger.info("Initializing model...")
    
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=False,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    logger.info("Agent Ready")
    return agent

def create_ui(agent):
    PROMPT_TEMPLATE = """
Analyze the patient record excerpt for missed diagnoses. Provide detailed, evidence-based analysis.
Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
"""

    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(label="Analysis Summary", height=600)
                msg_input = gr.Textbox(placeholder="Ask about potential oversights...")
                send_btn = gr.Button("Analyze", variant="primary")
                file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
            
            with gr.Column(scale=1):
                final_summary = gr.Markdown(label="Missed Diagnoses Summary")
                download_output = gr.File(label="Download Detailed Report")
                progress_bar = gr.Progress()

        def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
            history.append({"role": "user", "content": message})
            yield history, None, ""

            extracted = []
            file_hash_value = ""
            
            if files:
                for f in files:
                    file_type = f.name.split(".")[-1].lower()
                    cache_key = f"{file_hash(f.name)}_{file_type}"
                    
                    if cache_key in cache:
                        extracted.extend(cache[cache_key])
                        history.append({"role": "assistant", "content": f"Using cached data for {os.path.basename(f.name)}"})
                        yield history, None, ""
                    else:
                        result = process_file_cached(f.name, file_type)
                        if result and not (len(result) == 1 and "error" in result[0]):
                            cache[cache_key] = result
                            extracted.extend(result)
                            history.append({"role": "assistant", "content": f"Processed {os.path.basename(f.name)}"})
                            yield history, None, ""
                        else:
                            error_msg = result[0]["error"] if result else "Unknown error"
                            history.append({"role": "assistant", "content": f"Failed to process {os.path.basename(f.name)}: {error_msg}"})
                            yield history, None, error_msg
                            return
                
                file_hash_value = file_hash(files[0].name) if files else ""

            if not extracted:
                history.append({"role": "assistant", "content": "❌ No valid content extracted"})
                yield history, None, "No valid content extracted"
                return

            chunks = [item["content"] for item in extracted if "content" in item]
            if not chunks:
                history.append({"role": "assistant", "content": "❌ No processable content found"})
                yield history, None, "No processable content found"
                return

            combined_response = ""
            report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
            
            try:
                for batch_idx in range(0, len(chunks), BATCH_SIZE):
                    batch_chunks = chunks[batch_idx:batch_idx + BATCH_SIZE]
                    
                    batch_prompts = [
                        PROMPT_TEMPLATE.format(
                            batch_idx + i + 1,
                            len(chunks),
                            chunk=chunk[:1800]
                        )
                        for i, chunk in enumerate(batch_chunks)
                    ]
                    
                    progress(batch_idx / len(chunks), 
                           desc=f"Processing batch {(batch_idx // BATCH_SIZE) + 1}/{(len(chunks) + BATCH_SIZE - 1) // BATCH_SIZE}")
                    
                    with ThreadPoolExecutor(max_workers=min(BATCH_SIZE, MAX_WORKERS)) as executor:
                        futures = {
                            executor.submit(
                                agent.run_quick_summary,
                                chunk, 0.2, 256, 1024
                            ): idx
                            for idx, chunk in enumerate(batch_chunks)
                        }
                        
                        for future in as_completed(futures):
                            chunk_idx = futures[future]
                            try:
                                response = clean_response(future.result())
                                if response:
                                    combined_response += f"--- Analysis for Chunk {batch_idx + chunk_idx + 1} ---\n{response}\n"
                                    history[-1] = {"role": "assistant", "content": combined_response.strip()}
                                    yield history, None, ""
                            except Exception as e:
                                logger.error(f"Chunk processing error: {e}")
                                history[-1] = {"role": "assistant", "content": f"Error processing chunk: {str(e)}"}
                                yield history, None, ""
                            finally:
                                del future
                                torch.cuda.empty_cache()
                                gc.collect()

                summary = "Analysis complete. " + ("Download full report below." if report_path and os.path.exists(report_path) else "")
                history.append({"role": "assistant", "content": "Analysis completed successfully"})
                yield history, report_path, summary

            except Exception as e:
                logger.error(f"Analysis error: {e}")
                history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
                yield history, None, f"Error occurred: {str(e)}"
            finally:
                torch.cuda.empty_cache()
                gc.collect()

        send_btn.click(
            analyze, 
            inputs=[msg_input, gr.State([]), file_upload], 
            outputs=[chatbot, download_output, final_summary]
        )
        msg_input.submit(
            analyze, 
            inputs=[msg_input, gr.State([]), file_upload], 
            outputs=[chatbot, download_output, final_summary]
        )
    
    return demo

if __name__ == "__main__":
    try:
        logger.info("Launching app...")
        agent = init_agent()
        demo = create_ui(agent)
        demo.queue().launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True
        )
    except Exception as e:
        logger.error(f"Fatal error: {e}")
        raise