File size: 17,380 Bytes
f394b25 d88209d e12aa83 f394b25 6b4b480 f394b25 a71a831 d88209d f394b25 a71a831 f394b25 d88209d dda4a06 5d37db7 dda4a06 5d37db7 dda4a06 d88209d a71a831 d88209d 3cd3468 c10ba83 fcebf54 c10ba83 3cd3468 a71a831 d88209d a71a831 d88209d a71a831 d88209d 5d37db7 d88209d 5d37db7 dda4a06 5d37db7 d88209d 5d37db7 828effe 5d37db7 a71a831 5d37db7 a71a831 5d37db7 a71a831 d88209d 5d37db7 d88209d f394b25 5d37db7 d88209d 5d37db7 dda4a06 5d37db7 d88209d 5d37db7 a71a831 d88209d 5d37db7 a71a831 d88209d dda4a06 d88209d dda4a06 d88209d dda4a06 d88209d a71a831 d88209d a71a831 d88209d a71a831 5d37db7 d88209d 5d37db7 d88209d 5d37db7 8a7f6db d88209d a71a831 d88209d a71a831 dda4a06 a71a831 d88209d e27edaa d88209d 8a7f6db d88209d a71a831 d88209d a71a831 e12aa83 a71a831 e12aa83 a71a831 e12aa83 a71a831 e12aa83 d88209d dda4a06 a71a831 d88209d dda4a06 d88209d e12aa83 4cf6d2e a71a831 d88209d a71a831 d88209d f394b25 d88209d dda4a06 d88209d dda4a06 d88209d e12aa83 5d37db7 dda4a06 9569e68 5d37db7 d88209d a71a831 d88209d dda4a06 d88209d dda4a06 d88209d dda4a06 9569e68 dda4a06 9569e68 d88209d 8a7f6db dda4a06 4cf6d2e a71a831 d88209d a71a831 dda4a06 d88209d a71a831 55e3db0 f394b25 dda4a06 e12aa83 dda4a06 f394b25 dda4a06 f394b25 d88209d dda4a06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Optional, Generator
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
from transformers import AutoTokenizer
from functools import lru_cache
import numpy as np
from difflib import SequenceMatcher
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
MAX_TOKENS = 1800
BATCH_SIZE = 1
MAX_WORKERS = 2
CHUNK_SIZE = 5
MODEL_MAX_TOKENS = 131072
MAX_TEXT_LENGTH = 500000
# Persistent directory setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ.update({
"HF_HOME": model_cache_dir,
"TRANSFORMERS_CACHE": model_cache_dir,
"VLLM_CACHE_DIR": vllm_cache_dir,
"TOKENIZERS_PARALLELISM": "false",
"CUDA_LAUNCH_BLOCKING": "1"
})
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)
@lru_cache(maxsize=1)
def get_tokenizer():
return AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
hash_md5 = hashlib.md5()
with open(path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def extract_pdf_page(page, tokenizer, max_tokens=MAX_TOKENS) -> List[str]:
try:
text = page.extract_text() or ""
text = sanitize_utf8(text)
if len(text) > MAX_TEXT_LENGTH // 10:
text = text[:MAX_TEXT_LENGTH // 10]
tokens = tokenizer.encode(text, add_special_tokens=False)
if len(tokens) > max_tokens:
chunks = []
current_chunk = []
current_length = 0
for token in tokens:
if current_length + 1 > max_tokens:
chunks.append(tokenizer.decode(current_chunk))
current_chunk = [token]
current_length = 1
else:
current_chunk.append(token)
current_length += 1
if current_chunk:
chunks.append(tokenizer.decode(current_chunk))
return [f"=== Page {page.page_number} ===\n{c}" for c in chunks]
return [f"=== Page {page.page_number} ===\n{text}"]
except Exception as e:
logger.warning(f"Error extracting page {page.page_number}: {str(e)}")
return []
def extract_all_pages(file_path: str, progress_callback=None) -> List[str]:
try:
tokenizer = get_tokenizer()
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if total_pages == 0:
return []
results = []
total_tokens = 0
for chunk_start in range(0, total_pages, CHUNK_SIZE):
chunk_end = min(chunk_start + CHUNK_SIZE, total_pages)
with pdfplumber.open(file_path) as pdf:
with ThreadPoolExecutor(max_workers=min(CHUNK_SIZE, 2)) as executor:
futures = [executor.submit(extract_pdf_page, pdf.pages[i], tokenizer)
for i in range(chunk_start, chunk_end)]
for future in as_completed(futures):
page_chunks = future.result()
for chunk in page_chunks:
chunk_tokens = len(tokenizer.encode(chunk, add_special_tokens=False))
if total_tokens + chunk_tokens > MODEL_MAX_TOKENS:
logger.warning(f"Total tokens exceed model limit. Stopping.")
return results
results.append(chunk)
total_tokens += chunk_tokens
if progress_callback:
progress_callback(min(chunk_end, total_pages), total_pages)
del pdf
gc.collect()
return results
except Exception as e:
logger.error(f"PDF processing error: {e}")
return [f"PDF processing error: {str(e)}"]
def excel_to_json(file_path: str) -> List[Dict]:
try:
# Try with openpyxl first
try:
with pd.ExcelFile(file_path, engine='openpyxl') as excel_file:
sheets = excel_file.sheet_names
results = []
for sheet_name in sheets:
df = pd.read_excel(
excel_file,
sheet_name=sheet_name,
header=None,
dtype=str,
na_filter=False
)
if not df.empty:
results.append({
"filename": f"{os.path.basename(file_path)} - {sheet_name}",
"rows": df.values.tolist(),
"type": "excel"
})
return results if results else [{"error": "No data found in any sheet"}]
except Exception as openpyxl_error:
# Fallback to xlrd
try:
with pd.ExcelFile(file_path, engine='xlrd') as excel_file:
sheets = excel_file.sheet_names
results = []
for sheet_name in sheets:
df = pd.read_excel(
excel_file,
sheet_name=sheet_name,
header=None,
dtype=str,
na_filter=False
)
if not df.empty:
results.append({
"filename": f"{os.path.basename(file_path)} - {sheet_name}",
"rows": df.values.tolist(),
"type": "excel"
})
return results if results else [{"error": "No data found in any sheet"}]
except Exception as xlrd_error:
logger.error(f"Excel processing failed: {xlrd_error}")
return [{"error": f"Excel processing failed: {str(xlrd_error)}"}]
except Exception as e:
logger.error(f"Excel file opening error: {e}")
return [{"error": f"Excel file opening error: {str(e)}"}]
def csv_to_json(file_path: str) -> List[Dict]:
try:
chunks = []
for chunk in pd.read_csv(
file_path,
header=None,
dtype=str,
encoding_errors='replace',
on_bad_lines='skip',
chunksize=10000,
na_filter=False
):
chunks.append(chunk)
df = pd.concat(chunks) if chunks else pd.DataFrame()
return [{
"filename": os.path.basename(file_path),
"rows": df.values.tolist(),
"type": "csv"
}]
except Exception as e:
logger.error(f"CSV processing error: {e}")
return [{"error": f"CSV processing error: {str(e)}"}]
@lru_cache(maxsize=100)
def process_file_cached(file_path: str, file_type: str) -> List[Dict]:
try:
if file_type == "pdf":
chunks = extract_all_pages(file_path)
return [{
"filename": os.path.basename(file_path),
"content": chunk,
"status": "initial",
"type": "pdf"
} for chunk in chunks]
elif file_type in ["xls", "xlsx"]:
return excel_to_json(file_path)
elif file_type == "csv":
return csv_to_json(file_path)
else:
return [{"error": f"Unsupported file type: {file_type}"}]
except Exception as e:
logger.error(f"Error processing file: {e}")
return [{"error": f"Error processing file: {str(e)}"}]
def clean_response(text: str) -> str:
if not text:
return ""
patterns = [
(re.compile(r"\[.*?\]|\bNone\b", re.IGNORECASE), ""),
(re.compile(r"\s+"), " "),
(re.compile(r"[^\w\s\.\,\(\)\-]"), ""),
]
for pattern, repl in patterns:
text = pattern.sub(repl, text)
sentences = text.split(". ")
unique_sentences = []
seen = set()
for s in sentences:
if not s:
continue
is_unique = True
for seen_s in seen:
if SequenceMatcher(None, s.lower(), seen_s.lower()).ratio() > 0.9:
is_unique = False
break
if is_unique:
unique_sentences.append(s)
seen.add(s)
text = ". ".join(unique_sentences).strip()
return text if text else "No missed diagnoses identified."
@lru_cache(maxsize=1)
def init_agent():
logger.info("Initializing model...")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=False,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
logger.info("Agent Ready")
return agent
def create_ui(agent):
PROMPT_TEMPLATE = """
Analyze the patient record excerpt for missed diagnoses. Provide detailed, evidence-based analysis.
Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
"""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="Analysis Summary", height=600)
msg_input = gr.Textbox(placeholder="Ask about potential oversights...")
send_btn = gr.Button("Analyze", variant="primary")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
with gr.Column(scale=1):
final_summary = gr.Markdown(label="Missed Diagnoses Summary")
download_output = gr.File(label="Download Detailed Report")
progress_bar = gr.Progress()
def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
history.append({"role": "user", "content": message})
yield history, None, ""
extracted = []
file_hash_value = ""
if files:
for f in files:
file_type = f.name.split(".")[-1].lower()
cache_key = f"{file_hash(f.name)}_{file_type}"
if cache_key in cache:
extracted.extend(cache[cache_key])
history.append({"role": "assistant", "content": f"Using cached data for {os.path.basename(f.name)}"})
yield history, None, ""
else:
result = process_file_cached(f.name, file_type)
if result and not (len(result) == 1 and "error" in result[0]):
cache[cache_key] = result
extracted.extend(result)
history.append({"role": "assistant", "content": f"Processed {os.path.basename(f.name)}"})
yield history, None, ""
else:
error_msg = result[0]["error"] if result else "Unknown error"
history.append({"role": "assistant", "content": f"Failed to process {os.path.basename(f.name)}: {error_msg}"})
yield history, None, error_msg
return
file_hash_value = file_hash(files[0].name) if files else ""
if not extracted:
history.append({"role": "assistant", "content": "❌ No valid content extracted"})
yield history, None, "No valid content extracted"
return
chunks = [item["content"] for item in extracted if "content" in item]
if not chunks:
history.append({"role": "assistant", "content": "❌ No processable content found"})
yield history, None, "No processable content found"
return
combined_response = ""
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
try:
for batch_idx in range(0, len(chunks), BATCH_SIZE):
batch_chunks = chunks[batch_idx:batch_idx + BATCH_SIZE]
batch_prompts = [
PROMPT_TEMPLATE.format(
batch_idx + i + 1,
len(chunks),
chunk=chunk[:1800]
)
for i, chunk in enumerate(batch_chunks)
]
progress(batch_idx / len(chunks),
desc=f"Processing batch {(batch_idx // BATCH_SIZE) + 1}/{(len(chunks) + BATCH_SIZE - 1) // BATCH_SIZE}")
with ThreadPoolExecutor(max_workers=min(BATCH_SIZE, MAX_WORKERS)) as executor:
futures = {
executor.submit(
agent.run_quick_summary,
chunk, 0.2, 256, 1024
): idx
for idx, chunk in enumerate(batch_chunks)
}
for future in as_completed(futures):
chunk_idx = futures[future]
try:
response = clean_response(future.result())
if response:
combined_response += f"--- Analysis for Chunk {batch_idx + chunk_idx + 1} ---\n{response}\n"
history[-1] = {"role": "assistant", "content": combined_response.strip()}
yield history, None, ""
except Exception as e:
logger.error(f"Chunk processing error: {e}")
history[-1] = {"role": "assistant", "content": f"Error processing chunk: {str(e)}"}
yield history, None, ""
finally:
del future
torch.cuda.empty_cache()
gc.collect()
summary = "Analysis complete. " + ("Download full report below." if report_path and os.path.exists(report_path) else "")
history.append({"role": "assistant", "content": "Analysis completed successfully"})
yield history, report_path, summary
except Exception as e:
logger.error(f"Analysis error: {e}")
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
yield history, None, f"Error occurred: {str(e)}"
finally:
torch.cuda.empty_cache()
gc.collect()
send_btn.click(
analyze,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output, final_summary]
)
msg_input.submit(
analyze,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output, final_summary]
)
return demo
if __name__ == "__main__":
try:
logger.info("Launching app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue().launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
except Exception as e:
logger.error(f"Fatal error: {e}")
raise |