Update app.py
Browse files
app.py
CHANGED
@@ -30,6 +30,7 @@ MAX_TOKENS = 1800
|
|
30 |
BATCH_SIZE = 2
|
31 |
MAX_WORKERS = 4
|
32 |
CHUNK_SIZE = 10 # For PDF processing
|
|
|
33 |
|
34 |
# Persistent directory setup
|
35 |
persistent_dir = "/data/hf_cache"
|
@@ -190,13 +191,41 @@ def process_file_cached(file_path: str, file_type: str) -> List[Dict]:
|
|
190 |
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]
|
191 |
|
192 |
def tokenize_and_chunk(text: str, max_tokens: int = MAX_TOKENS) -> List[str]:
|
193 |
-
"""Optimized tokenization and chunking"""
|
194 |
tokenizer = get_tokenizer()
|
195 |
tokens = tokenizer.encode(text, add_special_tokens=False)
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
def log_system_usage(tag=""):
|
202 |
"""Optimized system monitoring"""
|
@@ -402,7 +431,14 @@ Patient Record Excerpt (Chunk {0} of {1}):
|
|
402 |
del extracted
|
403 |
gc.collect()
|
404 |
|
405 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
del text_content
|
407 |
gc.collect()
|
408 |
|
@@ -450,6 +486,10 @@ Patient Record Excerpt (Chunk {0} of {1}):
|
|
450 |
seen_responses.add(quick_response)
|
451 |
history[-1] = {"role": "assistant", "content": combined_response.strip()}
|
452 |
yield history, None, ""
|
|
|
|
|
|
|
|
|
453 |
finally:
|
454 |
del future
|
455 |
torch.cuda.empty_cache()
|
@@ -475,6 +515,10 @@ Patient Record Excerpt (Chunk {0} of {1}):
|
|
475 |
combined_response += clean_response(msg.content) + "\n"
|
476 |
history[-1] = {"role": "assistant", "content": combined_response.strip()}
|
477 |
yield history, report_path, ""
|
|
|
|
|
|
|
|
|
478 |
finally:
|
479 |
del future
|
480 |
torch.cuda.empty_cache()
|
|
|
30 |
BATCH_SIZE = 2
|
31 |
MAX_WORKERS = 4
|
32 |
CHUNK_SIZE = 10 # For PDF processing
|
33 |
+
MODEL_MAX_TOKENS = 131072 # Model's maximum token limit
|
34 |
|
35 |
# Persistent directory setup
|
36 |
persistent_dir = "/data/hf_cache"
|
|
|
191 |
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]
|
192 |
|
193 |
def tokenize_and_chunk(text: str, max_tokens: int = MAX_TOKENS) -> List[str]:
|
194 |
+
"""Optimized tokenization and chunking with strict token limit enforcement"""
|
195 |
tokenizer = get_tokenizer()
|
196 |
tokens = tokenizer.encode(text, add_special_tokens=False)
|
197 |
+
chunks = []
|
198 |
+
current_chunk = []
|
199 |
+
current_length = 0
|
200 |
+
|
201 |
+
for token in tokens:
|
202 |
+
if current_length + 1 > max_tokens:
|
203 |
+
chunks.append(tokenizer.decode(current_chunk))
|
204 |
+
current_chunk = [token]
|
205 |
+
current_length = 1
|
206 |
+
else:
|
207 |
+
current_chunk.append(token)
|
208 |
+
current_length += 1
|
209 |
+
|
210 |
+
if current_chunk:
|
211 |
+
chunks.append(tokenizer.decode(current_chunk))
|
212 |
+
|
213 |
+
# Validate total tokens
|
214 |
+
total_tokens = sum(len(tokenizer.encode(chunk, add_special_tokens=False)) for chunk in chunks)
|
215 |
+
if total_tokens > MODEL_MAX_TOKENS:
|
216 |
+
logger.warning(f"Total tokens ({total_tokens}) exceed model limit ({MODEL_MAX_TOKENS}). Truncating.")
|
217 |
+
truncated_chunks = []
|
218 |
+
current_tokens = 0
|
219 |
+
for chunk in chunks:
|
220 |
+
chunk_tokens = len(tokenizer.encode(chunk, add_special_tokens=False))
|
221 |
+
if current_tokens + chunk_tokens <= MODEL_MAX_TOKENS:
|
222 |
+
truncated_chunks.append(chunk)
|
223 |
+
current_tokens += chunk_tokens
|
224 |
+
else:
|
225 |
+
break
|
226 |
+
chunks = truncated_chunks
|
227 |
+
|
228 |
+
return chunks
|
229 |
|
230 |
def log_system_usage(tag=""):
|
231 |
"""Optimized system monitoring"""
|
|
|
431 |
del extracted
|
432 |
gc.collect()
|
433 |
|
434 |
+
try:
|
435 |
+
chunks = tokenize_and_chunk(text_content)
|
436 |
+
except Exception as e:
|
437 |
+
logger.error(f"Tokenization error: {e}")
|
438 |
+
history.append({"role": "assistant", "content": f"❌ Error: Input too large to process. Please upload a smaller file."})
|
439 |
+
yield history, None, f"Error: Input too large to process."
|
440 |
+
return
|
441 |
+
|
442 |
del text_content
|
443 |
gc.collect()
|
444 |
|
|
|
486 |
seen_responses.add(quick_response)
|
487 |
history[-1] = {"role": "assistant", "content": combined_response.strip()}
|
488 |
yield history, None, ""
|
489 |
+
except Exception as e:
|
490 |
+
logger.error(f"Quick summary error for chunk {batch_idx + chunk_idx + 1}: {e}")
|
491 |
+
history[-1] = {"role": "assistant", "content": f"Error processing chunk {batch_idx + chunk_idx + 1}: {str(e)}"}
|
492 |
+
yield history, None, ""
|
493 |
finally:
|
494 |
del future
|
495 |
torch.cuda.empty_cache()
|
|
|
515 |
combined_response += clean_response(msg.content) + "\n"
|
516 |
history[-1] = {"role": "assistant", "content": combined_response.strip()}
|
517 |
yield history, report_path, ""
|
518 |
+
except Exception as e:
|
519 |
+
logger.error(f"Detailed analysis error for chunk {batch_idx + chunk_idx + 1}: {e}")
|
520 |
+
history[-1] = {"role": "assistant", "content": f"Error in detailed analysis for chunk {batch_idx + chunk_idx + 1}: {str(e)}"}
|
521 |
+
yield history, None, ""
|
522 |
finally:
|
523 |
del future
|
524 |
torch.cuda.empty_cache()
|