Update app.py
Browse files
app.py
CHANGED
@@ -27,10 +27,11 @@ logger = logging.getLogger(__name__)
|
|
27 |
|
28 |
# Constants
|
29 |
MAX_TOKENS = 1800
|
30 |
-
BATCH_SIZE =
|
31 |
-
MAX_WORKERS =
|
32 |
-
CHUNK_SIZE =
|
33 |
-
MODEL_MAX_TOKENS = 131072
|
|
|
34 |
|
35 |
# Persistent directory setup
|
36 |
persistent_dir = "/data/hf_cache"
|
@@ -79,45 +80,75 @@ def file_hash(path: str) -> str:
|
|
79 |
hash_md5.update(chunk)
|
80 |
return hash_md5.hexdigest()
|
81 |
|
82 |
-
def extract_pdf_page(page) -> str:
|
83 |
-
"""
|
84 |
try:
|
85 |
text = page.extract_text() or ""
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
except Exception as e:
|
88 |
logger.warning(f"Error extracting page {page.page_number}: {str(e)}")
|
89 |
-
return
|
90 |
|
91 |
-
def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
92 |
-
"""
|
93 |
try:
|
|
|
94 |
with pdfplumber.open(file_path) as pdf:
|
95 |
total_pages = len(pdf.pages)
|
96 |
if total_pages == 0:
|
97 |
-
return
|
98 |
|
99 |
results = []
|
|
|
100 |
for chunk_start in range(0, total_pages, CHUNK_SIZE):
|
101 |
chunk_end = min(chunk_start + CHUNK_SIZE, total_pages)
|
102 |
|
103 |
with pdfplumber.open(file_path) as pdf:
|
104 |
-
with ThreadPoolExecutor(max_workers=min(CHUNK_SIZE,
|
105 |
-
futures = [executor.submit(extract_pdf_page, pdf.pages[i])
|
106 |
for i in range(chunk_start, chunk_end)]
|
107 |
|
108 |
for future in as_completed(futures):
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
if progress_callback:
|
112 |
progress_callback(min(chunk_end, total_pages), total_pages)
|
113 |
|
114 |
del pdf
|
115 |
gc.collect()
|
116 |
|
117 |
-
return
|
118 |
except Exception as e:
|
119 |
logger.error(f"PDF processing error: {e}")
|
120 |
-
return f"PDF processing error: {str(e)}"
|
121 |
|
122 |
def excel_to_json(file_path: str) -> List[Dict]:
|
123 |
"""Optimized Excel processing with chunking"""
|
@@ -173,13 +204,13 @@ def process_file_cached(file_path: str, file_type: str) -> List[Dict]:
|
|
173 |
"""Cached file processing with memory optimization"""
|
174 |
try:
|
175 |
if file_type == "pdf":
|
176 |
-
|
177 |
return [{
|
178 |
"filename": os.path.basename(file_path),
|
179 |
-
"content":
|
180 |
"status": "initial",
|
181 |
"type": "pdf"
|
182 |
-
}]
|
183 |
elif file_type in ["xls", "xlsx"]:
|
184 |
return excel_to_json(file_path)
|
185 |
elif file_type == "csv":
|
@@ -191,9 +222,17 @@ def process_file_cached(file_path: str, file_type: str) -> List[Dict]:
|
|
191 |
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]
|
192 |
|
193 |
def tokenize_and_chunk(text: str, max_tokens: int = MAX_TOKENS) -> List[str]:
|
194 |
-
"""Optimized tokenization and chunking with
|
|
|
|
|
|
|
|
|
195 |
tokenizer = get_tokenizer()
|
196 |
tokens = tokenizer.encode(text, add_special_tokens=False)
|
|
|
|
|
|
|
|
|
197 |
chunks = []
|
198 |
current_chunk = []
|
199 |
current_length = 0
|
@@ -210,21 +249,6 @@ def tokenize_and_chunk(text: str, max_tokens: int = MAX_TOKENS) -> List[str]:
|
|
210 |
if current_chunk:
|
211 |
chunks.append(tokenizer.decode(current_chunk))
|
212 |
|
213 |
-
# Validate total tokens
|
214 |
-
total_tokens = sum(len(tokenizer.encode(chunk, add_special_tokens=False)) for chunk in chunks)
|
215 |
-
if total_tokens > MODEL_MAX_TOKENS:
|
216 |
-
logger.warning(f"Total tokens ({total_tokens}) exceed model limit ({MODEL_MAX_TOKENS}). Truncating.")
|
217 |
-
truncated_chunks = []
|
218 |
-
current_tokens = 0
|
219 |
-
for chunk in chunks:
|
220 |
-
chunk_tokens = len(tokenizer.encode(chunk, add_special_tokens=False))
|
221 |
-
if current_tokens + chunk_tokens <= MODEL_MAX_TOKENS:
|
222 |
-
truncated_chunks.append(chunk)
|
223 |
-
current_tokens += chunk_tokens
|
224 |
-
else:
|
225 |
-
break
|
226 |
-
chunks = truncated_chunks
|
227 |
-
|
228 |
return chunks
|
229 |
|
230 |
def log_system_usage(tag=""):
|
@@ -427,26 +451,22 @@ Patient Record Excerpt (Chunk {0} of {1}):
|
|
427 |
history.append({"role": "assistant", "content": "✅ File processing complete"})
|
428 |
yield history, None, ""
|
429 |
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
try:
|
435 |
-
chunks = tokenize_and_chunk(text_content)
|
436 |
-
except Exception as e:
|
437 |
-
logger.error(f"Tokenization error: {e}")
|
438 |
-
history.append({"role": "assistant", "content": f"❌ Error: Input too large to process. Please upload a smaller file."})
|
439 |
-
yield history, None, f"Error: Input too large to process."
|
440 |
return
|
441 |
-
|
442 |
-
del text_content
|
443 |
-
gc.collect()
|
444 |
-
|
445 |
combined_response = ""
|
446 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
447 |
seen_responses = set()
|
448 |
|
449 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
for batch_idx in range(0, len(chunks), BATCH_SIZE):
|
451 |
batch_chunks = chunks[batch_idx:batch_idx + BATCH_SIZE]
|
452 |
|
@@ -511,10 +531,12 @@ Patient Record Excerpt (Chunk {0} of {1}):
|
|
511 |
for chunk_output in future.result():
|
512 |
if isinstance(chunk_output, list):
|
513 |
for msg in chunk_output:
|
514 |
-
if isinstance(msg, ChatMessage) and msg.content:
|
515 |
-
|
516 |
-
|
517 |
-
|
|
|
|
|
518 |
except Exception as e:
|
519 |
logger.error(f"Detailed analysis error for chunk {batch_idx + chunk_idx + 1}: {e}")
|
520 |
history[-1] = {"role": "assistant", "content": f"Error in detailed analysis for chunk {batch_idx + chunk_idx + 1}: {str(e)}"}
|
|
|
27 |
|
28 |
# Constants
|
29 |
MAX_TOKENS = 1800
|
30 |
+
BATCH_SIZE = 1 # Reduced to minimize memory pressure
|
31 |
+
MAX_WORKERS = 2
|
32 |
+
CHUNK_SIZE = 5 # Smaller chunks for PDF processing
|
33 |
+
MODEL_MAX_TOKENS = 131072
|
34 |
+
MAX_TEXT_LENGTH = 500000 # Limit raw text length before tokenization
|
35 |
|
36 |
# Persistent directory setup
|
37 |
persistent_dir = "/data/hf_cache"
|
|
|
80 |
hash_md5.update(chunk)
|
81 |
return hash_md5.hexdigest()
|
82 |
|
83 |
+
def extract_pdf_page(page, tokenizer, max_tokens=MAX_TOKENS) -> List[str]:
|
84 |
+
"""Extract and chunk a single page with token limit"""
|
85 |
try:
|
86 |
text = page.extract_text() or ""
|
87 |
+
text = sanitize_utf8(text)
|
88 |
+
if len(text) > MAX_TEXT_LENGTH // 10: # Per-page text limit
|
89 |
+
logger.warning(f"Page {page.page_number} text too long ({len(text)}). Truncating.")
|
90 |
+
text = text[:MAX_TEXT_LENGTH // 10]
|
91 |
+
|
92 |
+
tokens = tokenizer.encode(text, add_special_tokens=False)
|
93 |
+
if len(tokens) > max_tokens:
|
94 |
+
chunks = []
|
95 |
+
current_chunk = []
|
96 |
+
current_length = 0
|
97 |
+
for token in tokens:
|
98 |
+
if current_length + 1 > max_tokens:
|
99 |
+
chunks.append(tokenizer.decode(current_chunk))
|
100 |
+
current_chunk = [token]
|
101 |
+
current_length = 1
|
102 |
+
else:
|
103 |
+
current_chunk.append(token)
|
104 |
+
current_length += 1
|
105 |
+
if current_chunk:
|
106 |
+
chunks.append(tokenizer.decode(current_chunk))
|
107 |
+
return [f"=== Page {page.page_number} ===\n{c}" for c in chunks]
|
108 |
+
return [f"=== Page {page.page_number} ===\n{text}"]
|
109 |
except Exception as e:
|
110 |
logger.warning(f"Error extracting page {page.page_number}: {str(e)}")
|
111 |
+
return []
|
112 |
|
113 |
+
def extract_all_pages(file_path: str, progress_callback=None) -> List[str]:
|
114 |
+
"""Extract PDF pages with early token-based chunking"""
|
115 |
try:
|
116 |
+
tokenizer = get_tokenizer()
|
117 |
with pdfplumber.open(file_path) as pdf:
|
118 |
total_pages = len(pdf.pages)
|
119 |
if total_pages == 0:
|
120 |
+
return []
|
121 |
|
122 |
results = []
|
123 |
+
total_tokens = 0
|
124 |
for chunk_start in range(0, total_pages, CHUNK_SIZE):
|
125 |
chunk_end = min(chunk_start + CHUNK_SIZE, total_pages)
|
126 |
|
127 |
with pdfplumber.open(file_path) as pdf:
|
128 |
+
with ThreadPoolExecutor(max_workers=min(CHUNK_SIZE, 2)) as executor:
|
129 |
+
futures = [executor.submit(extract_pdf_page, pdf.pages[i], tokenizer)
|
130 |
for i in range(chunk_start, chunk_end)]
|
131 |
|
132 |
for future in as_completed(futures):
|
133 |
+
page_chunks = future.result()
|
134 |
+
for chunk in page_chunks:
|
135 |
+
chunk_tokens = len(tokenizer.encode(chunk, add_special_tokens=False))
|
136 |
+
if total_tokens + chunk_tokens > MODEL_MAX_TOKENS:
|
137 |
+
logger.warning(f"Total tokens ({total_tokens + chunk_tokens}) exceed model limit ({MODEL_MAX_TOKENS}). Stopping.")
|
138 |
+
return results
|
139 |
+
results.append(chunk)
|
140 |
+
total_tokens += chunk_tokens
|
141 |
+
|
142 |
if progress_callback:
|
143 |
progress_callback(min(chunk_end, total_pages), total_pages)
|
144 |
|
145 |
del pdf
|
146 |
gc.collect()
|
147 |
|
148 |
+
return results
|
149 |
except Exception as e:
|
150 |
logger.error(f"PDF processing error: {e}")
|
151 |
+
return [f"PDF processing error: {str(e)}"]
|
152 |
|
153 |
def excel_to_json(file_path: str) -> List[Dict]:
|
154 |
"""Optimized Excel processing with chunking"""
|
|
|
204 |
"""Cached file processing with memory optimization"""
|
205 |
try:
|
206 |
if file_type == "pdf":
|
207 |
+
chunks = extract_all_pages(file_path)
|
208 |
return [{
|
209 |
"filename": os.path.basename(file_path),
|
210 |
+
"content": chunk,
|
211 |
"status": "initial",
|
212 |
"type": "pdf"
|
213 |
+
} for chunk in chunks]
|
214 |
elif file_type in ["xls", "xlsx"]:
|
215 |
return excel_to_json(file_path)
|
216 |
elif file_type == "csv":
|
|
|
222 |
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]
|
223 |
|
224 |
def tokenize_and_chunk(text: str, max_tokens: int = MAX_TOKENS) -> List[str]:
|
225 |
+
"""Optimized tokenization and chunking with early validation"""
|
226 |
+
if len(text) > MAX_TEXT_LENGTH:
|
227 |
+
logger.warning(f"Text length ({len(text)}) exceeds limit ({MAX_TEXT_LENGTH}). Truncating.")
|
228 |
+
text = text[:MAX_TEXT_LENGTH]
|
229 |
+
|
230 |
tokenizer = get_tokenizer()
|
231 |
tokens = tokenizer.encode(text, add_special_tokens=False)
|
232 |
+
if len(tokens) > MODEL_MAX_TOKENS:
|
233 |
+
logger.error(f"Token count ({len(tokens)}) exceeds model limit ({MODEL_MAX_TOKENS}).")
|
234 |
+
return [text[:MAX_TEXT_LENGTH // 10]] # Fallback to small chunk
|
235 |
+
|
236 |
chunks = []
|
237 |
current_chunk = []
|
238 |
current_length = 0
|
|
|
249 |
if current_chunk:
|
250 |
chunks.append(tokenizer.decode(current_chunk))
|
251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
return chunks
|
253 |
|
254 |
def log_system_usage(tag=""):
|
|
|
451 |
history.append({"role": "assistant", "content": "✅ File processing complete"})
|
452 |
yield history, None, ""
|
453 |
|
454 |
+
if not extracted:
|
455 |
+
history.append({"role": "assistant", "content": "❌ No valid content extracted. Please upload a supported file."})
|
456 |
+
yield history, None, "No valid content extracted."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
return
|
458 |
+
|
|
|
|
|
|
|
459 |
combined_response = ""
|
460 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
461 |
seen_responses = set()
|
462 |
|
463 |
try:
|
464 |
+
chunks = [item["content"] for item in extracted if "content" in item]
|
465 |
+
if not chunks:
|
466 |
+
history.append({"role": "assistant", "content": "❌ No processable content found in the file."})
|
467 |
+
yield history, None, "No processable content found."
|
468 |
+
return
|
469 |
+
|
470 |
for batch_idx in range(0, len(chunks), BATCH_SIZE):
|
471 |
batch_chunks = chunks[batch_idx:batch_idx + BATCH_SIZE]
|
472 |
|
|
|
531 |
for chunk_output in future.result():
|
532 |
if isinstance(chunk_output, list):
|
533 |
for msg in chunk_output:
|
534 |
+
if isinstance(msg, gr.ChatMessage) and msg.content:
|
535 |
+
cleaned_content = clean_response(msg.content)
|
536 |
+
if cleaned_content and cleaned_content != "No missed diagnoses identified.":
|
537 |
+
combined_response += cleaned_content + "\n"
|
538 |
+
history[-1] = {"role": "assistant", "content": combined_response.strip()}
|
539 |
+
yield history, report_path, ""
|
540 |
except Exception as e:
|
541 |
logger.error(f"Detailed analysis error for chunk {batch_idx + chunk_idx + 1}: {e}")
|
542 |
history[-1] = {"role": "assistant", "content": f"Error in detailed analysis for chunk {batch_idx + chunk_idx + 1}: {str(e)}"}
|