Update app.py
Browse files
app.py
CHANGED
@@ -5,23 +5,37 @@ import pdfplumber
|
|
5 |
import json
|
6 |
import gradio as gr
|
7 |
from typing import List, Dict, Optional, Generator
|
8 |
-
from concurrent.futures import
|
9 |
import hashlib
|
10 |
import shutil
|
11 |
import re
|
12 |
import psutil
|
13 |
-
import subprocess
|
14 |
import logging
|
15 |
import torch
|
16 |
import gc
|
17 |
from diskcache import Cache
|
18 |
import time
|
19 |
from transformers import AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Configure logging
|
22 |
logging.basicConfig(level=logging.INFO)
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# Persistent directory
|
26 |
persistent_dir = "/data/hf_cache"
|
27 |
os.makedirs(persistent_dir, exist_ok=True)
|
@@ -61,13 +75,17 @@ def file_hash(path: str) -> str:
|
|
61 |
return hashlib.md5(f.read()).hexdigest()
|
62 |
|
63 |
def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
|
|
|
|
|
|
|
|
64 |
try:
|
65 |
with pdfplumber.open(file_path) as pdf:
|
66 |
total_pages = len(pdf.pages)
|
67 |
if total_pages == 0:
|
68 |
return ""
|
69 |
|
70 |
-
batch_size =
|
71 |
batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
|
72 |
text_chunks = [""] * total_pages
|
73 |
processed_pages = 0
|
@@ -77,11 +95,11 @@ def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
|
77 |
with pdfplumber.open(file_path) as pdf:
|
78 |
for page in pdf.pages[start:end]:
|
79 |
page_num = start + pdf.pages.index(page)
|
80 |
-
page_text = page.
|
81 |
results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}"))
|
82 |
return results
|
83 |
|
84 |
-
with
|
85 |
futures = [executor.submit(extract_batch, start, end) for start, end in batches]
|
86 |
for future in as_completed(futures):
|
87 |
for page_num, text in future.result():
|
@@ -90,62 +108,54 @@ def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
|
90 |
if progress_callback:
|
91 |
progress_callback(min(processed_pages, total_pages), total_pages)
|
92 |
|
93 |
-
|
|
|
|
|
94 |
except Exception as e:
|
95 |
logger.error("PDF processing error: %s", e)
|
96 |
return f"PDF processing error: {str(e)}"
|
97 |
|
98 |
def excel_to_json(file_path: str) -> List[Dict]:
|
99 |
-
|
|
|
|
|
|
|
100 |
try:
|
101 |
-
|
102 |
-
|
103 |
-
df = pd.read_excel(file_path, engine='openpyxl', header=None, dtype=str)
|
104 |
-
except Exception:
|
105 |
-
# Fall back to xlrd if needed
|
106 |
-
df = pd.read_excel(file_path, engine='xlrd', header=None, dtype=str)
|
107 |
-
|
108 |
-
# Convert to list of lists with null handling
|
109 |
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
|
110 |
-
|
111 |
-
return [{
|
112 |
"filename": os.path.basename(file_path),
|
113 |
"rows": content,
|
114 |
"type": "excel"
|
115 |
}]
|
|
|
|
|
116 |
except Exception as e:
|
117 |
logger.error(f"Error processing Excel file: {e}")
|
118 |
return [{"error": f"Error processing Excel file: {str(e)}"}]
|
119 |
|
120 |
def csv_to_json(file_path: str) -> List[Dict]:
|
121 |
-
|
|
|
|
|
|
|
122 |
try:
|
123 |
-
|
124 |
-
|
125 |
-
for chunk in pd.read_csv(
|
126 |
-
file_path,
|
127 |
-
header=None,
|
128 |
-
dtype=str,
|
129 |
-
encoding_errors='replace',
|
130 |
-
on_bad_lines='skip',
|
131 |
-
chunksize=10000
|
132 |
-
):
|
133 |
-
chunks.append(chunk)
|
134 |
-
|
135 |
-
df = pd.concat(chunks) if chunks else pd.DataFrame()
|
136 |
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
|
137 |
-
|
138 |
-
return [{
|
139 |
"filename": os.path.basename(file_path),
|
140 |
"rows": content,
|
141 |
"type": "csv"
|
142 |
}]
|
|
|
|
|
143 |
except Exception as e:
|
144 |
logger.error(f"Error processing CSV file: {e}")
|
145 |
return [{"error": f"Error processing CSV file: {str(e)}"}]
|
146 |
|
147 |
def process_file(file_path: str, file_type: str) -> List[Dict]:
|
148 |
-
"""Process file based on type and return JSON data"""
|
149 |
try:
|
150 |
if file_type == "pdf":
|
151 |
text = extract_all_pages(file_path)
|
@@ -165,18 +175,22 @@ def process_file(file_path: str, file_type: str) -> List[Dict]:
|
|
165 |
logger.error("Error processing %s: %s", os.path.basename(file_path), e)
|
166 |
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]
|
167 |
|
168 |
-
def tokenize_and_chunk(text: str, max_tokens: int =
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
171 |
chunks = []
|
172 |
for i in range(0, len(tokens), max_tokens):
|
173 |
chunk_tokens = tokens[i:i + max_tokens]
|
174 |
-
chunks.append(tokenizer.decode(chunk_tokens))
|
|
|
175 |
return chunks
|
176 |
|
177 |
def log_system_usage(tag=""):
|
178 |
try:
|
179 |
-
cpu = psutil.cpu_percent(interval=1)
|
180 |
mem = psutil.virtual_memory()
|
181 |
logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2))
|
182 |
result = subprocess.run(
|
@@ -261,27 +275,27 @@ def init_agent():
|
|
261 |
if not os.path.exists(target_tool_path):
|
262 |
shutil.copy(default_tool_path, target_tool_path)
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
|
|
273 |
)
|
274 |
-
agent.init_model()
|
275 |
log_system_usage("After Load")
|
276 |
logger.info("Agent Ready")
|
277 |
-
return
|
278 |
|
279 |
-
def create_ui(
|
280 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
281 |
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
282 |
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages")
|
283 |
final_summary = gr.Markdown(label="Summary of Missed Diagnoses")
|
284 |
-
file_upload = gr.File(file_types=["
|
285 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
286 |
send_btn = gr.Button("Analyze", variant="primary")
|
287 |
download_output = gr.File(label="Download Full Report")
|
@@ -293,7 +307,10 @@ Patient Record Excerpt (Chunk {0} of {1}):
|
|
293 |
{chunk}
|
294 |
"""
|
295 |
|
296 |
-
def
|
|
|
|
|
|
|
297 |
history.append({"role": "user", "content": message})
|
298 |
yield history, None, ""
|
299 |
|
@@ -301,8 +318,7 @@ Patient Record Excerpt (Chunk {0} of {1}):
|
|
301 |
file_hash_value = ""
|
302 |
|
303 |
if files:
|
304 |
-
|
305 |
-
with ThreadPoolExecutor(max_workers=4) as executor:
|
306 |
futures = []
|
307 |
for f in files:
|
308 |
file_type = f.name.split(".")[-1].lower()
|
@@ -323,14 +339,11 @@ Patient Record Excerpt (Chunk {0} of {1}):
|
|
323 |
history.append({"role": "assistant", "content": "✅ File processing complete"})
|
324 |
yield history, None, ""
|
325 |
|
326 |
-
# Convert extracted data to JSON text
|
327 |
text_content = "\n".join(json.dumps(item) for item in extracted)
|
328 |
-
|
329 |
-
# Tokenize and chunk the content properly
|
330 |
chunks = tokenize_and_chunk(text_content)
|
331 |
combined_response = ""
|
332 |
-
batch_size =
|
333 |
-
|
334 |
try:
|
335 |
for batch_idx in range(0, len(chunks), batch_size):
|
336 |
batch_chunks = chunks[batch_idx:batch_idx + batch_size]
|
@@ -338,7 +351,7 @@ Patient Record Excerpt (Chunk {0} of {1}):
|
|
338 |
prompt_template.format(
|
339 |
batch_idx + i + 1,
|
340 |
len(chunks),
|
341 |
-
chunk=chunk[:
|
342 |
)
|
343 |
for i, chunk in enumerate(batch_chunks)
|
344 |
]
|
@@ -346,63 +359,54 @@ Patient Record Excerpt (Chunk {0} of {1}):
|
|
346 |
progress((batch_idx) / len(chunks),
|
347 |
desc=f"Analyzing batch {(batch_idx // batch_size) + 1}/{(len(chunks) + batch_size - 1) // batch_size}")
|
348 |
|
349 |
-
|
350 |
-
|
351 |
-
future_to_prompt = {
|
352 |
-
executor.submit(
|
353 |
-
agent.run_gradio_chat,
|
354 |
-
prompt, [], 0.2, 512, 2048, False, []
|
355 |
-
): prompt
|
356 |
-
for prompt in batch_prompts
|
357 |
-
}
|
358 |
-
|
359 |
-
for future in as_completed(future_to_prompt):
|
360 |
chunk_response = ""
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
# Generate final summary
|
384 |
summary = summarize_findings(combined_response)
|
385 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
386 |
if report_path:
|
387 |
with open(report_path, "w", encoding="utf-8") as f:
|
388 |
f.write(combined_response + "\n\n" + summary)
|
|
|
389 |
|
390 |
yield history, report_path if report_path and os.path.exists(report_path) else None, summary
|
391 |
|
392 |
except Exception as e:
|
393 |
logger.error("Analysis error: %s", e)
|
394 |
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
|
|
395 |
yield history, None, f"Error occurred during analysis: {str(e)}"
|
396 |
|
397 |
-
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
|
398 |
-
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
|
399 |
return demo
|
400 |
|
401 |
if __name__ == "__main__":
|
402 |
try:
|
403 |
logger.info("Launching app...")
|
404 |
-
|
405 |
-
demo = create_ui(
|
406 |
demo.queue(api_open=False).launch(
|
407 |
server_name="0.0.0.0",
|
408 |
server_port=7860,
|
|
|
5 |
import json
|
6 |
import gradio as gr
|
7 |
from typing import List, Dict, Optional, Generator
|
8 |
+
from concurrent.futures import ProcessPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
import shutil
|
11 |
import re
|
12 |
import psutil
|
13 |
+
مخصوصimport subprocess
|
14 |
import logging
|
15 |
import torch
|
16 |
import gc
|
17 |
from diskcache import Cache
|
18 |
import time
|
19 |
from transformers import AutoTokenizer
|
20 |
+
import pyarrow as pa
|
21 |
+
import pyarrow.csv as pc
|
22 |
+
import pyarrow.parquet as pq
|
23 |
+
from vllm import LLM, SamplingParams
|
24 |
+
import asyncio
|
25 |
+
import threading
|
26 |
|
27 |
# Configure logging
|
28 |
logging.basicConfig(level=logging.INFO)
|
29 |
logger = logging.getLogger(__name__)
|
30 |
|
31 |
+
# File handler for response logging
|
32 |
+
response_log_file = os.path.join("/data/hf_cache", "response_log.txt")
|
33 |
+
response_logger = logging.getLogger("ResponseLogger")
|
34 |
+
response_handler = logging.FileHandler(response_log_file, mode="a")
|
35 |
+
response_handler.setFormatter(logging.Formatter("%(asctime)s - %(message)s"))
|
36 |
+
response_logger.addHandler(response_handler)
|
37 |
+
response_logger.setLevel(logging.INFO)
|
38 |
+
|
39 |
# Persistent directory
|
40 |
persistent_dir = "/data/hf_cache"
|
41 |
os.makedirs(persistent_dir, exist_ok=True)
|
|
|
75 |
return hashlib.md5(f.read()).hexdigest()
|
76 |
|
77 |
def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
78 |
+
cache_key = f"pdf_{file_hash(file_path)}"
|
79 |
+
if cache_key in cache:
|
80 |
+
return cache[cache_key]
|
81 |
+
|
82 |
try:
|
83 |
with pdfplumber.open(file_path) as pdf:
|
84 |
total_pages = len(pdf.pages)
|
85 |
if total_pages == 0:
|
86 |
return ""
|
87 |
|
88 |
+
batch_size = 5
|
89 |
batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
|
90 |
text_chunks = [""] * total_pages
|
91 |
processed_pages = 0
|
|
|
95 |
with pdfplumber.open(file_path) as pdf:
|
96 |
for page in pdf.pages[start:end]:
|
97 |
page_num = start + pdf.pages.index(page)
|
98 |
+
page_text = page.extract_text_simple() or ""
|
99 |
results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}"))
|
100 |
return results
|
101 |
|
102 |
+
with ProcessPoolExecutor(max_workers=4) as executor:
|
103 |
futures = [executor.submit(extract_batch, start, end) for start, end in batches]
|
104 |
for future in as_completed(futures):
|
105 |
for page_num, text in future.result():
|
|
|
108 |
if progress_callback:
|
109 |
progress_callback(min(processed_pages, total_pages), total_pages)
|
110 |
|
111 |
+
result = "\n\n".join(filter(None, text_chunks))
|
112 |
+
cache[cache_key] = result
|
113 |
+
return result
|
114 |
except Exception as e:
|
115 |
logger.error("PDF processing error: %s", e)
|
116 |
return f"PDF processing error: {str(e)}"
|
117 |
|
118 |
def excel_to_json(file_path: str) -> List[Dict]:
|
119 |
+
cache_key = f"excel_{file_hash(file_path)}"
|
120 |
+
if cache_key in cache:
|
121 |
+
return cache[cache_key]
|
122 |
+
|
123 |
try:
|
124 |
+
table = pq.read_table(file_path)
|
125 |
+
df = table.to_pandas(use_threads=True, split_blocks=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
|
127 |
+
result = [{
|
|
|
128 |
"filename": os.path.basename(file_path),
|
129 |
"rows": content,
|
130 |
"type": "excel"
|
131 |
}]
|
132 |
+
cache[cache_key] = result
|
133 |
+
return result
|
134 |
except Exception as e:
|
135 |
logger.error(f"Error processing Excel file: {e}")
|
136 |
return [{"error": f"Error processing Excel file: {str(e)}"}]
|
137 |
|
138 |
def csv_to_json(file_path: str) -> List[Dict]:
|
139 |
+
cache_key = f"csv_{file_hash(file_path)}"
|
140 |
+
if cache_key in cache:
|
141 |
+
return cache[cache_key]
|
142 |
+
|
143 |
try:
|
144 |
+
table = pc.read_csv(file_path, parse_options=pc.ParseOptions(invalid_row_handler=lambda x: "skip"))
|
145 |
+
df = table.to_pandas(use_threads=True, split_blocks=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
|
147 |
+
result = [{
|
|
|
148 |
"filename": os.path.basename(file_path),
|
149 |
"rows": content,
|
150 |
"type": "csv"
|
151 |
}]
|
152 |
+
cache[cache_key] = result
|
153 |
+
return result
|
154 |
except Exception as e:
|
155 |
logger.error(f"Error processing CSV file: {e}")
|
156 |
return [{"error": f"Error processing CSV file: {str(e)}"}]
|
157 |
|
158 |
def process_file(file_path: str, file_type: str) -> List[Dict]:
|
|
|
159 |
try:
|
160 |
if file_type == "pdf":
|
161 |
text = extract_all_pages(file_path)
|
|
|
175 |
logger.error("Error processing %s: %s", os.path.basename(file_path), e)
|
176 |
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]
|
177 |
|
178 |
+
def tokenize_and_chunk(text: str, max_tokens: int = 800) -> List[str]:
|
179 |
+
cache_key = f"tokens_{hashlib.md5(text.encode()).hexdigest()}"
|
180 |
+
if cache_key in cache:
|
181 |
+
return cache[cache_key]
|
182 |
+
|
183 |
+
tokens = tokenizer.encode(text, add_special_tokens=False)
|
184 |
chunks = []
|
185 |
for i in range(0, len(tokens), max_tokens):
|
186 |
chunk_tokens = tokens[i:i + max_tokens]
|
187 |
+
chunks.append(tokenizer.decode(chunk_tokens, skip_special_tokens=True))
|
188 |
+
cache[cache_key] = chunks
|
189 |
return chunks
|
190 |
|
191 |
def log_system_usage(tag=""):
|
192 |
try:
|
193 |
+
cpu = psutil.cpu_percent(interval=0.1)
|
194 |
mem = psutil.virtual_memory()
|
195 |
logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2))
|
196 |
result = subprocess.run(
|
|
|
275 |
if not os.path.exists(target_tool_path):
|
276 |
shutil.copy(default_tool_path, target_tool_path)
|
277 |
|
278 |
+
llm = LLM(
|
279 |
+
model="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
280 |
+
gpu_memory_utilization=0.8,
|
281 |
+
max_model_len=2048,
|
282 |
+
tensor_parallel_size=1,
|
283 |
+
)
|
284 |
+
sampling_params = SamplingParams(
|
285 |
+
temperature=0.2,
|
286 |
+
max_tokens=256, # Reduced for faster streaming
|
287 |
+
stop=["</s>", "[INST]"],
|
288 |
)
|
|
|
289 |
log_system_usage("After Load")
|
290 |
logger.info("Agent Ready")
|
291 |
+
return llm, sampling_params
|
292 |
|
293 |
+
async def create_ui(llm, sampling_params):
|
294 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
295 |
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
296 |
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages")
|
297 |
final_summary = gr.Markdown(label="Summary of Missed Diagnoses")
|
298 |
+
file_upload = gr.File(file_types=["pdf", "csv", "xls", "xlsx"], file_count="multiple")
|
299 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
300 |
send_btn = gr.Button("Analyze", variant="primary")
|
301 |
download_output = gr.File(label="Download Full Report")
|
|
|
307 |
{chunk}
|
308 |
"""
|
309 |
|
310 |
+
def log_response_partial(text: str):
|
311 |
+
response_logger.info(text)
|
312 |
+
|
313 |
+
async def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
|
314 |
history.append({"role": "user", "content": message})
|
315 |
yield history, None, ""
|
316 |
|
|
|
318 |
file_hash_value = ""
|
319 |
|
320 |
if files:
|
321 |
+
with ProcessPoolExecutor(max_workers=4) as executor:
|
|
|
322 |
futures = []
|
323 |
for f in files:
|
324 |
file_type = f.name.split(".")[-1].lower()
|
|
|
339 |
history.append({"role": "assistant", "content": "✅ File processing complete"})
|
340 |
yield history, None, ""
|
341 |
|
|
|
342 |
text_content = "\n".join(json.dumps(item) for item in extracted)
|
|
|
|
|
343 |
chunks = tokenize_and_chunk(text_content)
|
344 |
combined_response = ""
|
345 |
+
batch_size = 1
|
346 |
+
|
347 |
try:
|
348 |
for batch_idx in range(0, len(chunks), batch_size):
|
349 |
batch_chunks = chunks[batch_idx:batch_idx + batch_size]
|
|
|
351 |
prompt_template.format(
|
352 |
batch_idx + i + 1,
|
353 |
len(chunks),
|
354 |
+
chunk=chunk[:800]
|
355 |
)
|
356 |
for i, chunk in enumerate(batch_chunks)
|
357 |
]
|
|
|
359 |
progress((batch_idx) / len(chunks),
|
360 |
desc=f"Analyzing batch {(batch_idx // batch_size) + 1}/{(len(chunks) + batch_size - 1) // batch_size}")
|
361 |
|
362 |
+
with torch.no_grad():
|
363 |
+
for prompt in batch_prompts:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
chunk_response = ""
|
365 |
+
current_response = ""
|
366 |
+
stream = llm.generate([prompt], sampling_params, use_tqdm=False)
|
367 |
+
for output in stream:
|
368 |
+
for request_output in output:
|
369 |
+
new_text = request_output.outputs[0].text[len(current_response):]
|
370 |
+
if new_text:
|
371 |
+
current_response += new_text
|
372 |
+
cleaned = clean_response(current_response)
|
373 |
+
if cleaned and cleaned != chunk_response:
|
374 |
+
chunk_response = cleaned
|
375 |
+
history[-1] = {"role": "assistant", "content": chunk_response}
|
376 |
+
threading.Thread(target=log_response_partial, args=(chunk_response,)).start()
|
377 |
+
yield history, None, ""
|
378 |
+
await asyncio.sleep(0.01) # Prevent UI blocking
|
379 |
+
|
380 |
+
if chunk_response:
|
381 |
+
combined_response += f"--- Analysis for Chunk {batch_idx + 1} ---\n{chunk_response}\n"
|
382 |
+
|
383 |
+
torch.cuda.empty_cache()
|
384 |
+
gc.collect()
|
385 |
+
|
|
|
|
|
386 |
summary = summarize_findings(combined_response)
|
387 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
388 |
if report_path:
|
389 |
with open(report_path, "w", encoding="utf-8") as f:
|
390 |
f.write(combined_response + "\n\n" + summary)
|
391 |
+
threading.Thread(target=log_response_partial, args=(summary,)).start()
|
392 |
|
393 |
yield history, report_path if report_path and os.path.exists(report_path) else None, summary
|
394 |
|
395 |
except Exception as e:
|
396 |
logger.error("Analysis error: %s", e)
|
397 |
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
398 |
+
threading.Thread(target=log_response_partial, args=(f"Error: {str(e)}",)).start()
|
399 |
yield history, None, f"Error occurred during analysis: {str(e)}"
|
400 |
|
401 |
+
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary], _js="() => {return {streaming: true}}")
|
402 |
+
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary], _js="() => {return {streaming: true}}")
|
403 |
return demo
|
404 |
|
405 |
if __name__ == "__main__":
|
406 |
try:
|
407 |
logger.info("Launching app...")
|
408 |
+
llm, sampling_params = init_agent()
|
409 |
+
demo = asyncio.run(create_ui(llm, sampling_params))
|
410 |
demo.queue(api_open=False).launch(
|
411 |
server_name="0.0.0.0",
|
412 |
server_port=7860,
|