Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import pandas as pd
|
|
4 |
import pdfplumber
|
5 |
import json
|
6 |
import gradio as gr
|
7 |
-
from typing import List, Dict,
|
8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
import shutil
|
@@ -15,858 +15,401 @@ import logging
|
|
15 |
import torch
|
16 |
import gc
|
17 |
from diskcache import Cache
|
|
|
18 |
from transformers import AutoTokenizer
|
19 |
-
from pathlib import Path
|
20 |
|
21 |
-
#
|
22 |
logging.basicConfig(level=logging.INFO)
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
for
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
os.environ
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
"CUDA_LAUNCH_BLOCKING": "1"
|
45 |
-
})
|
46 |
-
|
47 |
-
# Add src path for txagent
|
48 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
49 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
50 |
sys.path.insert(0, src_path)
|
51 |
|
52 |
from txagent.txagent import TxAgent
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
with pdfplumber.open(file_path) as pdf:
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
except Exception as e:
|
88 |
-
logger.error(f"PDF extraction failed: {e}")
|
89 |
-
return f"PDF processing error: {str(e)}"
|
90 |
-
|
91 |
-
@staticmethod
|
92 |
-
def process_tabular_data(file_path: str, file_type: str) -> List[Dict]:
|
93 |
-
"""Process Excel or CSV files"""
|
94 |
try:
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
return [{
|
112 |
"filename": os.path.basename(file_path),
|
113 |
-
"
|
114 |
-
"
|
|
|
115 |
}]
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
def handle_upload(cls, file_path: str, file_type: str) -> List[Dict]:
|
122 |
-
"""Route file processing based on type"""
|
123 |
-
processor_map = {
|
124 |
-
"pdf": cls.extract_pdf_content,
|
125 |
-
"xls": lambda x: cls.process_tabular_data(x, "excel"),
|
126 |
-
"xlsx": lambda x: cls.process_tabular_data(x, "excel"),
|
127 |
-
"csv": lambda x: cls.process_tabular_data(x, "csv")
|
128 |
-
}
|
129 |
-
|
130 |
-
if file_type not in processor_map:
|
131 |
return [{"error": f"Unsupported file type: {file_type}"}]
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
def chunk_content(self, text: str, max_tokens: int = 1800) -> List[str]:
|
154 |
-
"""Split text into token-limited chunks"""
|
155 |
-
tokens = self.tokenizer.encode(text)
|
156 |
-
return [
|
157 |
-
self.tokenizer.decode(tokens[i:i+max_tokens])
|
158 |
-
for i in range(0, len(tokens), max_tokens)
|
159 |
-
]
|
160 |
-
|
161 |
-
def clean_output(self, text: str) -> str:
|
162 |
-
"""Clean and format model response"""
|
163 |
-
text = text.encode("utf-8", "ignore").decode("utf-8")
|
164 |
-
text = re.sub(
|
165 |
-
r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\."
|
166 |
-
r"|Since the previous attempts.*?\.|I need to.*?medications\."
|
167 |
-
r"|Retrieving tools.*?\.", "", text, flags=re.DOTALL
|
168 |
)
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
line = line.strip()
|
175 |
if not line:
|
176 |
continue
|
177 |
if re.match(r"###\s*Missed Diagnoses", line):
|
178 |
-
|
179 |
continue
|
180 |
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
|
181 |
-
|
182 |
continue
|
183 |
-
if
|
184 |
diagnosis = re.sub(r"^\-\s*", "", line).strip()
|
185 |
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
|
186 |
diagnoses.append(diagnosis)
|
187 |
-
|
188 |
-
return " ".join(diagnoses) if diagnoses else ""
|
189 |
-
|
190 |
-
def generate_summary(self, analysis: str) -> str:
|
191 |
-
"""Create concise clinical summary"""
|
192 |
-
findings = []
|
193 |
-
for chunk in analysis.split("--- Analysis for Chunk"):
|
194 |
-
chunk = chunk.strip()
|
195 |
-
if not chunk or "No oversights identified" in chunk:
|
196 |
-
continue
|
197 |
-
|
198 |
-
in_section = False
|
199 |
-
for line in chunk.splitlines():
|
200 |
-
line = line.strip()
|
201 |
-
if not line:
|
202 |
-
continue
|
203 |
-
if re.match(r"###\s*Missed Diagnoses", line):
|
204 |
-
in_section = True
|
205 |
-
continue
|
206 |
-
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
|
207 |
-
in_section = False
|
208 |
-
continue
|
209 |
-
if in_section and re.match(r"-\s*.+", line):
|
210 |
-
finding = re.sub(r"^\-\s*", "", line).strip()
|
211 |
-
if finding and not re.match(r"No issues identified", finding, re.IGNORECASE):
|
212 |
-
findings.append(finding)
|
213 |
-
|
214 |
-
unique_findings = list(dict.fromkeys(findings))
|
215 |
-
|
216 |
-
if not unique_findings:
|
217 |
-
return "No clinical concerns identified in the provided records."
|
218 |
-
|
219 |
-
if len(unique_findings) > 1:
|
220 |
-
summary = "Potential concerns include: " + ", ".join(unique_findings[:-1])
|
221 |
-
summary += f", and {unique_findings[-1]}"
|
222 |
-
else:
|
223 |
-
summary = "Potential concern identified: " + unique_findings[0]
|
224 |
-
|
225 |
-
return summary + ". Recommend urgent clinical review."
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
def __init__(self):
|
231 |
-
self.agent = self._init_agent()
|
232 |
-
self.file_processor = FileProcessor()
|
233 |
-
self.text_analyzer = TextAnalyzer()
|
234 |
-
|
235 |
-
def _init_agent(self) -> Any:
|
236 |
-
"""Initialize the AI agent"""
|
237 |
-
logger.info("Initializing clinical agent...")
|
238 |
-
self._log_system_status("pre-init")
|
239 |
-
|
240 |
-
tool_path = DIRECTORIES["tools"] / "new_tool.json"
|
241 |
-
if not tool_path.exists():
|
242 |
-
default_tools = Path("data/new_tool.json")
|
243 |
-
if default_tools.exists():
|
244 |
-
shutil.copy(default_tools, tool_path)
|
245 |
-
|
246 |
-
agent = TxAgent(
|
247 |
-
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
248 |
-
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
249 |
-
tool_files_dict={"new_tool": str(tool_path)},
|
250 |
-
force_finish=True,
|
251 |
-
enable_checker=False,
|
252 |
-
step_rag_num=4,
|
253 |
-
seed=100,
|
254 |
-
additional_default_tools=[],
|
255 |
-
)
|
256 |
-
agent.init_model()
|
257 |
-
|
258 |
-
self._log_system_status("post-init")
|
259 |
-
logger.info("Clinical agent ready")
|
260 |
-
return agent
|
261 |
|
262 |
-
|
263 |
-
"
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
"--format=csv,nounits,noheader"],
|
272 |
-
capture_output=True, text=True
|
273 |
-
)
|
274 |
-
if gpu_info.returncode == 0:
|
275 |
-
used, total, util = gpu_info.stdout.strip().split(", ")
|
276 |
-
logger.info(f"[{phase}] GPU: {used}MB/{total}MB | Util: {util}%")
|
277 |
-
except Exception as e:
|
278 |
-
logger.error(f"Resource monitoring failed: {e}")
|
279 |
-
|
280 |
-
def process_stream(self, prompt: str, history: List[Dict]) -> Generator[Dict, None, None]:
|
281 |
-
"""Stream the agent's responses"""
|
282 |
-
full_response = ""
|
283 |
-
for chunk in self.agent.run_gradio_chat(prompt, [], 0.2, 512, 2048, False, []):
|
284 |
-
if not chunk:
|
285 |
-
continue
|
286 |
-
|
287 |
-
if isinstance(chunk, list):
|
288 |
-
for msg in chunk:
|
289 |
-
if hasattr(msg, 'content') and msg.content:
|
290 |
-
cleaned = self.text_analyzer.clean_output(msg.content)
|
291 |
-
if cleaned:
|
292 |
-
full_response += cleaned + " "
|
293 |
-
yield {"role": "assistant", "content": full_response}
|
294 |
-
elif isinstance(chunk, str) and chunk.strip():
|
295 |
-
cleaned = self.text_analyzer.clean_output(chunk)
|
296 |
-
if cleaned:
|
297 |
-
full_response += cleaned + " "
|
298 |
-
yield {"role": "assistant", "content": full_response}
|
299 |
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
history.append({"role": "user", "content": message})
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
# Process files
|
317 |
extracted = []
|
318 |
-
|
319 |
|
320 |
if files:
|
|
|
321 |
with ThreadPoolExecutor(max_workers=4) as executor:
|
322 |
futures = []
|
323 |
for f in files:
|
324 |
-
file_type =
|
325 |
futures.append(executor.submit(
|
326 |
-
|
327 |
-
f.name,
|
328 |
file_type
|
329 |
))
|
330 |
|
331 |
-
for
|
332 |
try:
|
333 |
extracted.extend(future.result())
|
334 |
-
outputs["progress"] = self._format_progress(i, len(files), "Processing files")
|
335 |
-
yield (outputs["chatbot"], outputs["download_output"], outputs["final_summary"], outputs["progress"])
|
336 |
except Exception as e:
|
337 |
-
logger.error(f"File processing
|
338 |
-
extracted.append({"error": str(e)})
|
339 |
-
|
340 |
-
if files and os.path.exists(files[0].name):
|
341 |
-
file_hash = hashlib.md5(open(files[0].name, "rb").read()).hexdigest()
|
342 |
-
|
343 |
-
history.append({"role": "assistant", "content": "✅ Files processed successfully"})
|
344 |
-
outputs.update({
|
345 |
-
"chatbot": history,
|
346 |
-
"progress": self._format_progress(len(files), len(files), "Files processed")
|
347 |
-
})
|
348 |
-
yield (outputs["chatbot"], outputs["download_output"], outputs["final_summary"], outputs["progress"])
|
349 |
-
|
350 |
-
# Analyze content
|
351 |
-
text_content = "\n".join(json.dumps(item) for item in extracted)
|
352 |
-
chunks = self.text_analyzer.chunk_content(text_content)
|
353 |
-
full_analysis = ""
|
354 |
-
|
355 |
-
for idx, chunk in enumerate(chunks, 1):
|
356 |
-
prompt = f"""
|
357 |
-
Analyze this clinical documentation for potential missed diagnoses. Provide:
|
358 |
-
1. Specific clinical findings with references (e.g., "Elevated BP (160/95) on page 3")
|
359 |
-
2. Their clinical significance
|
360 |
-
3. Urgency of review
|
361 |
-
Use concise, continuous prose without bullet points. If no concerns, state "No missed diagnoses identified."
|
362 |
-
|
363 |
-
Document Excerpt (Part {idx}/{len(chunks)}):
|
364 |
-
{chunk[:1750]}
|
365 |
-
"""
|
366 |
-
history.append({"role": "assistant", "content": ""})
|
367 |
-
outputs.update({
|
368 |
-
"chatbot": history,
|
369 |
-
"progress": self._format_progress(idx, len(chunks), "Analyzing")
|
370 |
-
})
|
371 |
-
yield (outputs["chatbot"], outputs["download_output"], outputs["final_summary"], outputs["progress"])
|
372 |
-
|
373 |
-
# Stream analysis
|
374 |
-
chunk_response = ""
|
375 |
-
for update in self.process_stream(prompt, history):
|
376 |
-
history[-1] = update
|
377 |
-
chunk_response = update["content"]
|
378 |
-
outputs.update({
|
379 |
-
"chatbot": history,
|
380 |
-
"progress": self._format_progress(idx, len(chunks), "Analyzing")
|
381 |
-
})
|
382 |
-
yield (outputs["chatbot"], outputs["download_output"], outputs["final_summary"], outputs["progress"])
|
383 |
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
|
388 |
-
#
|
389 |
-
|
390 |
-
report_path = DIRECTORIES["reports"] / f"{file_hash}_report.txt" if file_hash else None
|
391 |
|
392 |
-
|
393 |
-
|
394 |
-
|
|
|
395 |
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
logger.error(f"Analysis failed: {e}")
|
405 |
-
history.append({"role": "assistant", "content": f"❌ Analysis error: {str(e)}"})
|
406 |
-
outputs.update({
|
407 |
-
"chatbot": history,
|
408 |
-
"final_summary": f"Error: {str(e)}",
|
409 |
-
"progress": {"visible": False}
|
410 |
-
})
|
411 |
-
yield (outputs["chatbot"], outputs["download_output"], outputs["final_summary"], outputs["progress"])
|
412 |
-
|
413 |
-
def _format_progress(self, current: int, total: int, stage: str = "") -> Dict[str, Any]:
|
414 |
-
"""Format progress update for UI"""
|
415 |
-
status = f"{stage} - {current}/{total}" if stage else f"{current}/{total}"
|
416 |
-
return {"value": status, "visible": True, "label": f"Progress: {status}"}
|
417 |
-
|
418 |
-
def create_interface(self) -> gr.Blocks:
|
419 |
-
"""Build the Gradio interface"""
|
420 |
-
css = """
|
421 |
-
/* ==================== BASE STYLES ==================== */
|
422 |
-
:root {
|
423 |
-
--primary-color: #4f46e5;
|
424 |
-
--primary-dark: #4338ca;
|
425 |
-
--border-radius: 8px;
|
426 |
-
--transition: all 0.3s ease;
|
427 |
-
--shadow: 0 4px 12px rgba(0,0,0,0.1);
|
428 |
-
--font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
|
429 |
-
--background: #ffffff;
|
430 |
-
--text-color: #1e293b;
|
431 |
-
--chat-bg: #f8fafc;
|
432 |
-
--message-bg: #e2e8f0;
|
433 |
-
--panel-bg: rgba(248, 250, 252, 0.9);
|
434 |
-
--panel-dark-bg: rgba(30, 41, 59, 0.9);
|
435 |
-
}
|
436 |
-
|
437 |
-
[data-theme="dark"] {
|
438 |
-
--background: #1e2a44;
|
439 |
-
--text-color: #f1f5f9;
|
440 |
-
--chat-bg: #2d3b55;
|
441 |
-
--message-bg: #475569;
|
442 |
-
--panel-bg: var(--panel-dark-bg);
|
443 |
-
}
|
444 |
-
|
445 |
-
body, .gradio-container {
|
446 |
-
font-family: var(--font-family);
|
447 |
-
background: var(--background);
|
448 |
-
color: var(--text-color);
|
449 |
-
margin: 0;
|
450 |
-
padding: 0;
|
451 |
-
transition: var(--transition);
|
452 |
-
}
|
453 |
-
|
454 |
-
/* ==================== LAYOUT ==================== */
|
455 |
-
.gradio-container {
|
456 |
-
max-width: 1200px;
|
457 |
-
margin: 0 auto;
|
458 |
-
padding: 1.5rem;
|
459 |
-
display: flex;
|
460 |
-
flex-direction: column;
|
461 |
-
gap: 1.5rem;
|
462 |
-
}
|
463 |
-
|
464 |
-
.chat-container {
|
465 |
-
background: var(--chat-bg);
|
466 |
-
border-radius: var(--border-radius);
|
467 |
-
border: 1px solid #e2e8f0;
|
468 |
-
padding: 1.5rem;
|
469 |
-
min-height: 50vh;
|
470 |
-
max-height: 80vh;
|
471 |
-
overflow-y: auto;
|
472 |
-
box-shadow: var(--shadow);
|
473 |
-
margin-bottom: 4rem;
|
474 |
-
}
|
475 |
-
|
476 |
-
.summary-panel {
|
477 |
-
background: var(--panel-bg);
|
478 |
-
border-left: 4px solid var(--primary-color);
|
479 |
-
padding: 1rem;
|
480 |
-
border-radius: var(--border-radius);
|
481 |
-
margin-bottom: 1rem;
|
482 |
-
box-shadow: var(--shadow);
|
483 |
-
backdrop-filter: blur(8px);
|
484 |
-
}
|
485 |
-
|
486 |
-
.upload-area {
|
487 |
-
border: 2px dashed #cbd5e1;
|
488 |
-
border-radius: var(--border-radius);
|
489 |
-
padding: 1.5rem;
|
490 |
-
margin: 0.75rem 0;
|
491 |
-
transition: var(--transition);
|
492 |
-
}
|
493 |
-
|
494 |
-
.upload-area:hover {
|
495 |
-
border-color: var(--primary-color);
|
496 |
-
background: rgba(79, 70, 229, 0.05);
|
497 |
-
}
|
498 |
-
|
499 |
-
/* ==================== COMPONENTS ==================== */
|
500 |
-
.chat__message {
|
501 |
-
margin: 0.75rem 0;
|
502 |
-
padding: 0.75rem 1rem;
|
503 |
-
border-radius: var(--border-radius);
|
504 |
-
max-width: 85%;
|
505 |
-
transition: var(--transition);
|
506 |
-
background: var(--message-bg);
|
507 |
-
border: 1px solid rgba(0,0,0,0.05);
|
508 |
-
animation: messageFade 0.3s ease;
|
509 |
-
}
|
510 |
-
|
511 |
-
.chat__message:hover {
|
512 |
-
transform: translateY(-2px);
|
513 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
514 |
-
}
|
515 |
-
|
516 |
-
.chat__message.user {
|
517 |
-
background: linear-gradient(135deg, var(--primary-color), var(--primary-dark));
|
518 |
-
color: white;
|
519 |
-
margin-left: auto;
|
520 |
-
}
|
521 |
-
|
522 |
-
.chat__message.assistant {
|
523 |
-
background: var(--message-bg);
|
524 |
-
color: var(--text-color);
|
525 |
-
}
|
526 |
-
|
527 |
-
.input-container {
|
528 |
-
display: flex;
|
529 |
-
align-items: center;
|
530 |
-
gap: 0.75rem;
|
531 |
-
background: var(--chat-bg);
|
532 |
-
padding: 0.75rem 1rem;
|
533 |
-
border-radius: 1.5rem;
|
534 |
-
box-shadow: var(--shadow);
|
535 |
-
position: sticky;
|
536 |
-
bottom: 1rem;
|
537 |
-
z-index: 10;
|
538 |
-
}
|
539 |
-
|
540 |
-
.input__textbox {
|
541 |
-
flex-grow: 1;
|
542 |
-
border: none;
|
543 |
-
background: transparent;
|
544 |
-
color: var(--text-color);
|
545 |
-
outline: none;
|
546 |
-
font-size: 1rem;
|
547 |
-
}
|
548 |
-
|
549 |
-
.input__textbox:focus {
|
550 |
-
border-bottom: 2px solid var(--primary-color);
|
551 |
-
}
|
552 |
-
|
553 |
-
.submit-btn {
|
554 |
-
background: linear-gradient(135deg, var(--primary-color), var(--primary-dark));
|
555 |
-
color: white;
|
556 |
-
border: none;
|
557 |
-
border-radius: 1rem;
|
558 |
-
padding: 0.5rem 1.25rem;
|
559 |
-
font-size: 0.9rem;
|
560 |
-
transition: var(--transition);
|
561 |
-
}
|
562 |
-
|
563 |
-
.submit-btn:hover {
|
564 |
-
transform: scale(1.05);
|
565 |
-
}
|
566 |
-
|
567 |
-
.submit-btn:active {
|
568 |
-
animation: glow 0.3s ease;
|
569 |
-
}
|
570 |
-
|
571 |
-
.tooltip {
|
572 |
-
position: relative;
|
573 |
-
}
|
574 |
-
|
575 |
-
.tooltip:hover::after {
|
576 |
-
content: attr(data-tip);
|
577 |
-
position: absolute;
|
578 |
-
top: -2.5rem;
|
579 |
-
left: 50%;
|
580 |
-
transform: translateX(-50%);
|
581 |
-
background: #1e293b;
|
582 |
-
color: white;
|
583 |
-
padding: 0.4rem 0.8rem;
|
584 |
-
border-radius: 0.4rem;
|
585 |
-
font-size: 0.85rem;
|
586 |
-
max-width: 200px;
|
587 |
-
white-space: normal;
|
588 |
-
text-align: center;
|
589 |
-
z-index: 1000;
|
590 |
-
animation: fadeIn 0.3s ease;
|
591 |
-
}
|
592 |
-
|
593 |
-
.progress-tracker {
|
594 |
-
position: relative;
|
595 |
-
padding: 0.5rem;
|
596 |
-
background: var(--message-bg);
|
597 |
-
border-radius: var(--border-radius);
|
598 |
-
margin-top: 0.75rem;
|
599 |
-
overflow: hidden;
|
600 |
-
}
|
601 |
-
|
602 |
-
.progress-tracker::before {
|
603 |
-
content: '';
|
604 |
-
position: absolute;
|
605 |
-
top: 0;
|
606 |
-
left: 0;
|
607 |
-
height: 100%;
|
608 |
-
width: 0;
|
609 |
-
background: linear-gradient(to right, var(--primary-color), var(--primary-dark));
|
610 |
-
opacity: 0.3;
|
611 |
-
animation: progress 2s ease-in-out infinite;
|
612 |
-
}
|
613 |
-
|
614 |
-
/* ==================== ANIMATIONS ==================== */
|
615 |
-
@keyframes glow {
|
616 |
-
0%, 100% { transform: scale(1); opacity: 1; }
|
617 |
-
50% { transform: scale(1.1); opacity: 0.8; }
|
618 |
-
}
|
619 |
-
|
620 |
-
@keyframes fadeIn {
|
621 |
-
from { opacity: 0; }
|
622 |
-
to { opacity: 1; }
|
623 |
-
}
|
624 |
-
|
625 |
-
@keyframes messageFade {
|
626 |
-
from { opacity: 0; transform: translateY(10px) scale(0.95); }
|
627 |
-
to { opacity: 1; transform: translateY(0) scale(1); }
|
628 |
-
}
|
629 |
-
|
630 |
-
@keyframes progress {
|
631 |
-
0% { width: 0; }
|
632 |
-
50% { width: 60%; }
|
633 |
-
100% { width: 0; }
|
634 |
-
}
|
635 |
-
|
636 |
-
/* ==================== THEMES ==================== */
|
637 |
-
[data-theme="dark"] .chat-container {
|
638 |
-
border-color: #475569;
|
639 |
-
}
|
640 |
-
|
641 |
-
[data-theme="dark"] .upload-area {
|
642 |
-
border-color: #64748b;
|
643 |
-
}
|
644 |
-
|
645 |
-
[data-theme="dark"] .upload-area:hover {
|
646 |
-
background: rgba(79, 70, 229, 0.1);
|
647 |
-
}
|
648 |
-
|
649 |
-
[data-theme="dark"] .summary-panel {
|
650 |
-
border-left-color: #818cf8;
|
651 |
-
}
|
652 |
-
|
653 |
-
/* ==================== MEDIA QUERIES ==================== */
|
654 |
-
@media (max-width: 768px) {
|
655 |
-
.gradio-container {
|
656 |
-
padding: 1rem;
|
657 |
-
}
|
658 |
-
|
659 |
-
.chat-container {
|
660 |
-
min-height: 40vh;
|
661 |
-
max-height: 70vh;
|
662 |
-
margin-bottom: 3.5rem;
|
663 |
-
}
|
664 |
-
|
665 |
-
.summary-panel {
|
666 |
-
padding: 0.75rem;
|
667 |
-
}
|
668 |
-
|
669 |
-
.upload-area {
|
670 |
-
padding: 1rem;
|
671 |
-
}
|
672 |
-
|
673 |
-
.input-container {
|
674 |
-
gap: 0.5rem;
|
675 |
-
padding: 0.5rem;
|
676 |
-
}
|
677 |
-
|
678 |
-
.submit-btn {
|
679 |
-
padding: 0.4rem 1rem;
|
680 |
-
}
|
681 |
-
}
|
682 |
-
|
683 |
-
@media (max-width: 480px) {
|
684 |
-
.chat-container {
|
685 |
-
padding: 1rem;
|
686 |
-
margin-bottom: 3rem;
|
687 |
-
}
|
688 |
-
|
689 |
-
.input-container {
|
690 |
-
flex-direction: column;
|
691 |
-
padding: 0.5rem;
|
692 |
-
}
|
693 |
-
|
694 |
-
.input__textbox {
|
695 |
-
font-size: 0.9rem;
|
696 |
-
}
|
697 |
-
|
698 |
-
.submit-btn {
|
699 |
-
width: 100%;
|
700 |
-
padding: 0.5rem;
|
701 |
-
font-size: 0.85rem;
|
702 |
-
}
|
703 |
-
|
704 |
-
.chat__message {
|
705 |
-
max-width: 90%;
|
706 |
-
padding: 0.5rem 0.75rem;
|
707 |
-
}
|
708 |
-
|
709 |
-
.tooltip:hover::after {
|
710 |
-
top: auto;
|
711 |
-
bottom: -2.5rem;
|
712 |
-
max-width: 80vw;
|
713 |
-
}
|
714 |
-
}
|
715 |
-
"""
|
716 |
-
|
717 |
-
js = """
|
718 |
-
function applyTheme(theme) {
|
719 |
-
document.documentElement.setAttribute('data-theme', theme);
|
720 |
-
localStorage.setItem('theme', theme);
|
721 |
-
}
|
722 |
-
|
723 |
-
document.addEventListener('DOMContentLoaded', () => {
|
724 |
-
const savedTheme = localStorage.getItem('theme') || 'light';
|
725 |
-
applyTheme(savedTheme);
|
726 |
-
});
|
727 |
-
"""
|
728 |
-
|
729 |
-
with gr.Blocks(
|
730 |
-
theme=gr.themes.Soft(
|
731 |
-
primary_hue="indigo",
|
732 |
-
secondary_hue="blue",
|
733 |
-
neutral_hue="slate"
|
734 |
-
),
|
735 |
-
title="Clinical Oversight Assistant",
|
736 |
-
css=css,
|
737 |
-
js=js
|
738 |
-
) as app:
|
739 |
-
# Header
|
740 |
-
gr.Markdown("""
|
741 |
-
<div style='text-align: center; margin-bottom: 24px;'>
|
742 |
-
<h1 style='color: var(--primary-color); margin-bottom: 8px;'>🩺 Clinical Oversight Assistant</h1>
|
743 |
-
<p style='color: #64748b;'>
|
744 |
-
AI-powered analysis for identifying potential missed diagnoses in patient records
|
745 |
-
</p>
|
746 |
-
</div>
|
747 |
-
""")
|
748 |
-
|
749 |
-
with gr.Row(equal_height=False):
|
750 |
-
# Main Chat Panel
|
751 |
-
with gr.Column(scale=3):
|
752 |
-
gr.Markdown(
|
753 |
-
"<div class='tooltip' data-tip='View conversation history'>**Clinical Analysis Conversation**</div>"
|
754 |
-
)
|
755 |
-
chatbot = gr.Chatbot(
|
756 |
-
label="",
|
757 |
-
height=650,
|
758 |
-
show_copy_button=True,
|
759 |
-
avatar_images=(
|
760 |
-
"assets/user.png",
|
761 |
-
"assets/assistant.png"
|
762 |
-
) if Path("assets/user.png").exists() else None,
|
763 |
-
bubble_full_width=False,
|
764 |
-
type="messages",
|
765 |
-
elem_classes=["chat-container"]
|
766 |
-
)
|
767 |
-
|
768 |
-
# Results Panel
|
769 |
-
with gr.Column(scale=1):
|
770 |
-
with gr.Group():
|
771 |
-
gr.Markdown(
|
772 |
-
"<div class='tooltip' data-tip='Summary of findings'>**Clinical Summary**</div>"
|
773 |
-
)
|
774 |
-
final_summary = gr.Markdown(
|
775 |
-
"<div class='tooltip' data-tip='Analysis results'>Analysis results will appear here...</div>",
|
776 |
-
elem_classes=["summary-panel"]
|
777 |
)
|
|
|
|
|
778 |
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
788 |
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
file_count="multiple",
|
794 |
-
label="Upload Patient Records",
|
795 |
-
elem_classes=["upload-area"],
|
796 |
-
elem_id="file-upload"
|
797 |
-
)
|
798 |
-
|
799 |
-
with gr.Row(elem_classes=["input-container"]):
|
800 |
-
user_input = gr.Textbox(
|
801 |
-
placeholder="Enter your clinical query or analysis request...",
|
802 |
-
show_label=False,
|
803 |
-
container=False,
|
804 |
-
scale=7,
|
805 |
-
autofocus=True,
|
806 |
-
elem_classes=["input__textbox"],
|
807 |
-
elem_id="user-input"
|
808 |
-
)
|
809 |
-
submit_btn = gr.Button(
|
810 |
-
"Analyze",
|
811 |
-
variant="primary",
|
812 |
-
scale=1,
|
813 |
-
min_width=120,
|
814 |
-
elem_classes=["submit-btn"],
|
815 |
-
elem_id="submit-btn"
|
816 |
-
)
|
817 |
-
|
818 |
-
# Hidden progress tracker
|
819 |
-
progress_tracker = gr.Textbox(
|
820 |
-
label="Analysis Progress",
|
821 |
-
visible=False,
|
822 |
-
interactive=False,
|
823 |
-
elem_classes=["progress-tracker"],
|
824 |
-
elem_id="progress-tracker"
|
825 |
-
)
|
826 |
-
|
827 |
-
# Event handlers
|
828 |
-
submit_btn.click(
|
829 |
-
self.analyze_records,
|
830 |
-
inputs=[user_input, chatbot, file_upload],
|
831 |
-
outputs=[chatbot, download_output, final_summary, progress_tracker],
|
832 |
-
show_progress="hidden"
|
833 |
-
)
|
834 |
-
|
835 |
-
user_input.submit(
|
836 |
-
self.analyze_records,
|
837 |
-
inputs=[user_input, chatbot, file_upload],
|
838 |
-
outputs=[chatbot, download_output, final_summary, progress_tracker],
|
839 |
-
show_progress="hidden"
|
840 |
-
)
|
841 |
-
|
842 |
-
app.load(
|
843 |
-
lambda: [[], None, "<div class='tooltip' data-tip='Analysis results'>Analysis results will appear here...</div>", "", None, {"visible": False}],
|
844 |
-
outputs=[chatbot, download_output, final_summary, user_input, file_upload, progress_tracker],
|
845 |
-
queue=False
|
846 |
-
)
|
847 |
|
848 |
-
|
|
|
|
|
849 |
|
850 |
-
# ==================== APPLICATION ENTRY POINT ====================
|
851 |
if __name__ == "__main__":
|
852 |
try:
|
853 |
-
logger.info("Launching
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
interface.queue(
|
858 |
-
api_open=False,
|
859 |
-
max_size=20
|
860 |
-
).launch(
|
861 |
server_name="0.0.0.0",
|
862 |
server_port=7860,
|
863 |
show_error=True,
|
864 |
-
allowed_paths=[
|
865 |
share=False
|
866 |
)
|
867 |
-
except Exception as e:
|
868 |
-
logger.error(f"Application failed to start: {e}")
|
869 |
-
raise
|
870 |
finally:
|
871 |
if torch.distributed.is_initialized():
|
872 |
torch.distributed.destroy_process_group()
|
|
|
4 |
import pdfplumber
|
5 |
import json
|
6 |
import gradio as gr
|
7 |
+
from typing import List, Dict, Optional, Generator
|
8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
import shutil
|
|
|
15 |
import torch
|
16 |
import gc
|
17 |
from diskcache import Cache
|
18 |
+
import time
|
19 |
from transformers import AutoTokenizer
|
|
|
20 |
|
21 |
+
# Configure logging
|
22 |
logging.basicConfig(level=logging.INFO)
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
25 |
+
# Persistent directory
|
26 |
+
persistent_dir = "/data/hf_cache"
|
27 |
+
os.makedirs(persistent_dir, exist_ok=True)
|
28 |
+
|
29 |
+
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
30 |
+
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
31 |
+
file_cache_dir = os.path.join(persistent_dir, "cache")
|
32 |
+
report_dir = os.path.join(persistent_dir, "reports")
|
33 |
+
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
|
34 |
+
|
35 |
+
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
|
36 |
+
os.makedirs(directory, exist_ok=True)
|
37 |
+
|
38 |
+
os.environ["HF_HOME"] = model_cache_dir
|
39 |
+
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
40 |
+
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
|
41 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
42 |
+
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
43 |
+
|
|
|
|
|
|
|
|
|
44 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
45 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
46 |
sys.path.insert(0, src_path)
|
47 |
|
48 |
from txagent.txagent import TxAgent
|
49 |
|
50 |
+
# Initialize cache with 10GB limit
|
51 |
+
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)
|
52 |
+
|
53 |
+
# Initialize tokenizer for precise chunking
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
|
55 |
+
|
56 |
+
def sanitize_utf8(text: str) -> str:
|
57 |
+
return text.encode("utf-8", "ignore").decode("utf-8")
|
58 |
+
|
59 |
+
def file_hash(path: str) -> str:
|
60 |
+
with open(path, "rb") as f:
|
61 |
+
return hashlib.md5(f.read()).hexdigest()
|
62 |
+
|
63 |
+
def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
64 |
+
try:
|
65 |
+
with pdfplumber.open(file_path) as pdf:
|
66 |
+
total_pages = len(pdf.pages)
|
67 |
+
if total_pages == 0:
|
68 |
+
return ""
|
69 |
+
|
70 |
+
batch_size = 10
|
71 |
+
batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
|
72 |
+
text_chunks = [""] * total_pages
|
73 |
+
processed_pages = 0
|
74 |
+
|
75 |
+
def extract_batch(start: int, end: int) -> List[tuple]:
|
76 |
+
results = []
|
77 |
with pdfplumber.open(file_path) as pdf:
|
78 |
+
for page in pdf.pages[start:end]:
|
79 |
+
page_num = start + pdf.pages.index(page)
|
80 |
+
page_text = page.extract_text() or ""
|
81 |
+
results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}"))
|
82 |
+
return results
|
83 |
+
|
84 |
+
with ThreadPoolExecutor(max_workers=6) as executor:
|
85 |
+
futures = [executor.submit(extract_batch, start, end) for start, end in batches]
|
86 |
+
for future in as_completed(futures):
|
87 |
+
for page_num, text in future.result():
|
88 |
+
text_chunks[page_num] = text
|
89 |
+
processed_pages += batch_size
|
90 |
+
if progress_callback:
|
91 |
+
progress_callback(min(processed_pages, total_pages), total_pages)
|
92 |
+
|
93 |
+
return "\n\n".join(filter(None, text_chunks))
|
94 |
+
except Exception as e:
|
95 |
+
logger.error("PDF processing error: %s", e)
|
96 |
+
return f"PDF processing error: {str(e)}"
|
97 |
+
|
98 |
+
def excel_to_json(file_path: str) -> List[Dict]:
|
99 |
+
"""Convert Excel file to JSON with optimized processing"""
|
100 |
+
try:
|
101 |
+
# First try with openpyxl (faster for xlsx)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
try:
|
103 |
+
df = pd.read_excel(file_path, engine='openpyxl', header=None, dtype=str)
|
104 |
+
except Exception:
|
105 |
+
# Fall back to xlrd if needed
|
106 |
+
df = pd.read_excel(file_path, engine='xlrd', header=None, dtype=str)
|
107 |
+
|
108 |
+
# Convert to list of lists with null handling
|
109 |
+
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
|
110 |
+
|
111 |
+
return [{
|
112 |
+
"filename": os.path.basename(file_path),
|
113 |
+
"rows": content,
|
114 |
+
"type": "excel"
|
115 |
+
}]
|
116 |
+
except Exception as e:
|
117 |
+
logger.error(f"Error processing Excel file: {e}")
|
118 |
+
return [{"error": f"Error processing Excel file: {str(e)}"}]
|
119 |
+
|
120 |
+
def csv_to_json(file_path: str) -> List[Dict]:
|
121 |
+
"""Convert CSV file to JSON with optimized processing"""
|
122 |
+
try:
|
123 |
+
# Read CSV in chunks if large
|
124 |
+
chunks = []
|
125 |
+
for chunk in pd.read_csv(
|
126 |
+
file_path,
|
127 |
+
header=None,
|
128 |
+
dtype=str,
|
129 |
+
encoding_errors='replace',
|
130 |
+
on_bad_lines='skip',
|
131 |
+
chunksize=10000
|
132 |
+
):
|
133 |
+
chunks.append(chunk)
|
134 |
+
|
135 |
+
df = pd.concat(chunks) if chunks else pd.DataFrame()
|
136 |
+
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
|
137 |
+
|
138 |
+
return [{
|
139 |
+
"filename": os.path.basename(file_path),
|
140 |
+
"rows": content,
|
141 |
+
"type": "csv"
|
142 |
+
}]
|
143 |
+
except Exception as e:
|
144 |
+
logger.error(f"Error processing CSV file: {e}")
|
145 |
+
return [{"error": f"Error processing CSV file: {str(e)}"}]
|
146 |
+
|
147 |
+
def process_file(file_path: str, file_type: str) -> List[Dict]:
|
148 |
+
"""Process file based on type and return JSON data"""
|
149 |
+
try:
|
150 |
+
if file_type == "pdf":
|
151 |
+
text = extract_all_pages(file_path)
|
152 |
return [{
|
153 |
"filename": os.path.basename(file_path),
|
154 |
+
"content": text,
|
155 |
+
"status": "initial",
|
156 |
+
"type": "pdf"
|
157 |
}]
|
158 |
+
elif file_type in ["xls", "xlsx"]:
|
159 |
+
return excel_to_json(file_path)
|
160 |
+
elif file_type == "csv":
|
161 |
+
return csv_to_json(file_path)
|
162 |
+
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
return [{"error": f"Unsupported file type: {file_type}"}]
|
164 |
+
except Exception as e:
|
165 |
+
logger.error("Error processing %s: %s", os.path.basename(file_path), e)
|
166 |
+
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]
|
167 |
+
|
168 |
+
def tokenize_and_chunk(text: str, max_tokens: int = 1800) -> List[str]:
|
169 |
+
"""Split text into chunks based on token count"""
|
170 |
+
tokens = tokenizer.encode(text)
|
171 |
+
chunks = []
|
172 |
+
for i in range(0, len(tokens), max_tokens):
|
173 |
+
chunk_tokens = tokens[i:i + max_tokens]
|
174 |
+
chunks.append(tokenizer.decode(chunk_tokens))
|
175 |
+
return chunks
|
176 |
+
|
177 |
+
def log_system_usage(tag=""):
|
178 |
+
try:
|
179 |
+
cpu = psutil.cpu_percent(interval=1)
|
180 |
+
mem = psutil.virtual_memory()
|
181 |
+
logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2))
|
182 |
+
result = subprocess.run(
|
183 |
+
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
|
184 |
+
capture_output=True, text=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
)
|
186 |
+
if result.returncode == 0:
|
187 |
+
used, total, util = result.stdout.strip().split(", ")
|
188 |
+
logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util)
|
189 |
+
except Exception as e:
|
190 |
+
logger.error("[%s] GPU/CPU monitor failed: %s", tag, e)
|
191 |
+
|
192 |
+
def clean_response(text: str) -> str:
|
193 |
+
text = sanitize_utf8(text)
|
194 |
+
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
|
195 |
+
diagnoses = []
|
196 |
+
lines = text.splitlines()
|
197 |
+
in_diagnoses_section = False
|
198 |
+
for line in lines:
|
199 |
+
line = line.strip()
|
200 |
+
if not line:
|
201 |
+
continue
|
202 |
+
if re.match(r"###\s*Missed Diagnoses", line):
|
203 |
+
in_diagnoses_section = True
|
204 |
+
continue
|
205 |
+
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
|
206 |
+
in_diagnoses_section = False
|
207 |
+
continue
|
208 |
+
if in_diagnoses_section and re.match(r"-\s*.+", line):
|
209 |
+
diagnosis = re.sub(r"^\-\s*", "", line).strip()
|
210 |
+
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
|
211 |
+
diagnoses.append(diagnosis)
|
212 |
+
text = " ".join(diagnoses)
|
213 |
+
text = re.sub(r"\s+", " ", text).strip()
|
214 |
+
text = re.sub(r"[^\w\s\.\,\(\)\-]", "", text)
|
215 |
+
return text if text else ""
|
216 |
+
|
217 |
+
def summarize_findings(combined_response: str) -> str:
|
218 |
+
chunks = combined_response.split("--- Analysis for Chunk")
|
219 |
+
diagnoses = []
|
220 |
+
for chunk in chunks:
|
221 |
+
chunk = chunk.strip()
|
222 |
+
if not chunk or "No oversights identified" in chunk:
|
223 |
+
continue
|
224 |
+
lines = chunk.splitlines()
|
225 |
+
in_diagnoses_section = False
|
226 |
+
for line in lines:
|
227 |
line = line.strip()
|
228 |
if not line:
|
229 |
continue
|
230 |
if re.match(r"###\s*Missed Diagnoses", line):
|
231 |
+
in_diagnoses_section = True
|
232 |
continue
|
233 |
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
|
234 |
+
in_diagnoses_section = False
|
235 |
continue
|
236 |
+
if in_diagnoses_section and re.match(r"-\s*.+", line):
|
237 |
diagnosis = re.sub(r"^\-\s*", "", line).strip()
|
238 |
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
|
239 |
diagnoses.append(diagnosis)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
+
seen = set()
|
242 |
+
unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
+
if not unique_diagnoses:
|
245 |
+
return "No missed diagnoses were identified in the provided records."
|
246 |
+
|
247 |
+
summary = "Missed diagnoses include " + ", ".join(unique_diagnoses[:-1])
|
248 |
+
if len(unique_diagnoses) > 1:
|
249 |
+
summary += f", and {unique_diagnoses[-1]}"
|
250 |
+
elif len(unique_diagnoses) == 1:
|
251 |
+
summary = "Missed diagnoses include " + unique_diagnoses[0]
|
252 |
+
summary += ", all of which require urgent clinical review to prevent potential adverse outcomes."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
+
return summary.strip()
|
255 |
+
|
256 |
+
def init_agent():
|
257 |
+
logger.info("Initializing model...")
|
258 |
+
log_system_usage("Before Load")
|
259 |
+
default_tool_path = os.path.abspath("data/new_tool.json")
|
260 |
+
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
261 |
+
if not os.path.exists(target_tool_path):
|
262 |
+
shutil.copy(default_tool_path, target_tool_path)
|
263 |
+
|
264 |
+
agent = TxAgent(
|
265 |
+
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
266 |
+
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
267 |
+
tool_files_dict={"new_tool": target_tool_path},
|
268 |
+
force_finish=True,
|
269 |
+
enable_checker=False,
|
270 |
+
step_rag_num=4,
|
271 |
+
seed=100,
|
272 |
+
additional_default_tools=[],
|
273 |
+
)
|
274 |
+
agent.init_model()
|
275 |
+
log_system_usage("After Load")
|
276 |
+
logger.info("Agent Ready")
|
277 |
+
return agent
|
278 |
+
|
279 |
+
def create_ui(agent):
|
280 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
281 |
+
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
282 |
+
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages")
|
283 |
+
final_summary = gr.Markdown(label="Summary of Missed Diagnoses")
|
284 |
+
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
285 |
+
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
286 |
+
send_btn = gr.Button("Analyze", variant="primary")
|
287 |
+
download_output = gr.File(label="Download Full Report")
|
288 |
+
progress_bar = gr.Progress()
|
289 |
+
|
290 |
+
prompt_template = """
|
291 |
+
Analyze the patient record excerpt for missed diagnoses only. Provide a concise, evidence-based summary as a single paragraph without headings or bullet points. Include specific clinical findings (e.g., 'elevated blood pressure (160/95) on page 10'), their potential implications (e.g., 'may indicate untreated hypertension'), and a recommendation for urgent review. Do not include other oversight categories like medication conflicts. If no missed diagnoses are found, state 'No missed diagnoses identified' in a single sentence.
|
292 |
+
Patient Record Excerpt (Chunk {0} of {1}):
|
293 |
+
{chunk}
|
294 |
+
"""
|
295 |
+
|
296 |
+
def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
|
297 |
history.append({"role": "user", "content": message})
|
298 |
+
yield history, None, ""
|
299 |
+
|
|
|
|
|
300 |
extracted = []
|
301 |
+
file_hash_value = ""
|
302 |
|
303 |
if files:
|
304 |
+
# Process files in parallel
|
305 |
with ThreadPoolExecutor(max_workers=4) as executor:
|
306 |
futures = []
|
307 |
for f in files:
|
308 |
+
file_type = f.name.split(".")[-1].lower()
|
309 |
futures.append(executor.submit(
|
310 |
+
process_file,
|
311 |
+
f.name,
|
312 |
file_type
|
313 |
))
|
314 |
|
315 |
+
for future in as_completed(futures):
|
316 |
try:
|
317 |
extracted.extend(future.result())
|
|
|
|
|
318 |
except Exception as e:
|
319 |
+
logger.error(f"File processing error: {e}")
|
320 |
+
extracted.append({"error": f"Error processing file: {str(e)}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
+
file_hash_value = file_hash(files[0].name) if files else ""
|
323 |
+
history.append({"role": "assistant", "content": "✅ File processing complete"})
|
324 |
+
yield history, None, ""
|
325 |
|
326 |
+
# Convert extracted data to JSON text
|
327 |
+
text_content = "\n".join(json.dumps(item) for item in extracted)
|
|
|
328 |
|
329 |
+
# Tokenize and chunk the content properly
|
330 |
+
chunks = tokenize_and_chunk(text_content)
|
331 |
+
combined_response = ""
|
332 |
+
batch_size = 2 # Reduced batch size to prevent token overflow
|
333 |
|
334 |
+
try:
|
335 |
+
for batch_idx in range(0, len(chunks), batch_size):
|
336 |
+
batch_chunks = chunks[batch_idx:batch_idx + batch_size]
|
337 |
+
batch_prompts = [
|
338 |
+
prompt_template.format(
|
339 |
+
batch_idx + i + 1,
|
340 |
+
len(chunks),
|
341 |
+
chunk=chunk[:1800] # Conservative chunk size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
)
|
343 |
+
for i, chunk in enumerate(batch_chunks)
|
344 |
+
]
|
345 |
|
346 |
+
progress((batch_idx) / len(chunks),
|
347 |
+
desc=f"Analyzing batch {(batch_idx // batch_size) + 1}/{(len(chunks) + batch_size - 1) // batch_size}")
|
348 |
+
|
349 |
+
# Process batch in parallel
|
350 |
+
with ThreadPoolExecutor(max_workers=len(batch_prompts)) as executor:
|
351 |
+
future_to_prompt = {
|
352 |
+
executor.submit(
|
353 |
+
agent.run_gradio_chat,
|
354 |
+
prompt, [], 0.2, 512, 2048, False, []
|
355 |
+
): prompt
|
356 |
+
for prompt in batch_prompts
|
357 |
+
}
|
358 |
+
|
359 |
+
for future in as_completed(future_to_prompt):
|
360 |
+
chunk_response = ""
|
361 |
+
for chunk_output in future.result():
|
362 |
+
if chunk_output is None:
|
363 |
+
continue
|
364 |
+
if isinstance(chunk_output, list):
|
365 |
+
for m in chunk_output:
|
366 |
+
if hasattr(m, 'content') and m.content:
|
367 |
+
cleaned = clean_response(m.content)
|
368 |
+
if cleaned:
|
369 |
+
chunk_response += cleaned + " "
|
370 |
+
elif isinstance(chunk_output, str) and chunk_output.strip():
|
371 |
+
cleaned = clean_response(chunk_output)
|
372 |
+
if cleaned:
|
373 |
+
chunk_response += cleaned + " "
|
374 |
+
|
375 |
+
combined_response += f"--- Analysis for Chunk {batch_idx + 1} ---\n{chunk_response.strip()}\n"
|
376 |
+
history[-1] = {"role": "assistant", "content": combined_response.strip()}
|
377 |
+
yield history, None, ""
|
378 |
+
|
379 |
+
# Clean up memory
|
380 |
+
torch.cuda.empty_cache()
|
381 |
+
gc.collect()
|
382 |
+
|
383 |
+
# Generate final summary
|
384 |
+
summary = summarize_findings(combined_response)
|
385 |
+
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
386 |
+
if report_path:
|
387 |
+
with open(report_path, "w", encoding="utf-8") as f:
|
388 |
+
f.write(combined_response + "\n\n" + summary)
|
389 |
+
|
390 |
+
yield history, report_path if report_path and os.path.exists(report_path) else None, summary
|
391 |
|
392 |
+
except Exception as e:
|
393 |
+
logger.error("Analysis error: %s", e)
|
394 |
+
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
395 |
+
yield history, None, f"Error occurred during analysis: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
|
397 |
+
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
|
398 |
+
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
|
399 |
+
return demo
|
400 |
|
|
|
401 |
if __name__ == "__main__":
|
402 |
try:
|
403 |
+
logger.info("Launching app...")
|
404 |
+
agent = init_agent()
|
405 |
+
demo = create_ui(agent)
|
406 |
+
demo.queue(api_open=False).launch(
|
|
|
|
|
|
|
|
|
407 |
server_name="0.0.0.0",
|
408 |
server_port=7860,
|
409 |
show_error=True,
|
410 |
+
allowed_paths=[report_dir],
|
411 |
share=False
|
412 |
)
|
|
|
|
|
|
|
413 |
finally:
|
414 |
if torch.distributed.is_initialized():
|
415 |
torch.distributed.destroy_process_group()
|