Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import pandas as pd
|
|
4 |
import pdfplumber
|
5 |
import json
|
6 |
import gradio as gr
|
7 |
-
from typing import List, Dict, Generator, Any
|
8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
import shutil
|
@@ -14,94 +14,50 @@ import subprocess
|
|
14 |
import logging
|
15 |
import torch
|
16 |
import gc
|
17 |
-
import atexit
|
18 |
-
import signal
|
19 |
from diskcache import Cache
|
20 |
from transformers import AutoTokenizer
|
21 |
-
from
|
22 |
|
23 |
# ==================== CONFIGURATION ====================
|
24 |
-
# Configure logging
|
25 |
logging.basicConfig(level=logging.INFO)
|
26 |
logger = logging.getLogger(__name__)
|
27 |
|
28 |
-
# Setup
|
29 |
-
|
30 |
DIRECTORIES = {
|
31 |
-
"models":
|
32 |
-
"tools":
|
33 |
-
"cache":
|
34 |
-
"reports":
|
35 |
-
"vllm":
|
36 |
}
|
37 |
|
38 |
-
# Create directories
|
39 |
for dir_path in DIRECTORIES.values():
|
40 |
-
|
41 |
|
42 |
-
# Environment
|
43 |
os.environ.update({
|
44 |
-
"HF_HOME": DIRECTORIES["models"],
|
45 |
-
"TRANSFORMERS_CACHE": DIRECTORIES["models"],
|
46 |
-
"VLLM_CACHE_DIR": DIRECTORIES["vllm"],
|
47 |
"TOKENIZERS_PARALLELISM": "false",
|
48 |
"CUDA_LAUNCH_BLOCKING": "1"
|
49 |
})
|
50 |
|
51 |
-
#
|
52 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
53 |
-
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
54 |
-
sys.path.insert(0, src_path)
|
55 |
-
|
56 |
-
from txagent.txagent import TxAgent
|
57 |
-
|
58 |
-
# Log Gradio version for debugging
|
59 |
-
logger.info(f"Gradio version: {gr.__version__}")
|
60 |
-
|
61 |
-
# ==================== UTILITY FUNCTIONS ====================
|
62 |
-
def sanitize_text(text: str) -> str:
|
63 |
-
"""Clean and sanitize text input"""
|
64 |
-
return text.encode("utf-8", "ignore").decode("utf-8")
|
65 |
-
|
66 |
-
def get_file_hash(file_path: str) -> str:
|
67 |
-
"""Generate MD5 hash of file content"""
|
68 |
-
with open(file_path, "rb") as f:
|
69 |
-
return hashlib.md5(f.read()).hexdigest()
|
70 |
-
|
71 |
-
def log_system_resources(tag: str = "") -> None:
|
72 |
-
"""Log system resource usage"""
|
73 |
-
try:
|
74 |
-
cpu = psutil.cpu_percent(interval=1)
|
75 |
-
mem = psutil.virtual_memory()
|
76 |
-
logger.info(f"[{tag}] CPU: {cpu:.1f}% | RAM: {mem.used//(1024**2)}MB/{mem.total//(1024**2)}MB")
|
77 |
-
|
78 |
-
gpu_info = subprocess.run(
|
79 |
-
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu",
|
80 |
-
"--format=csv,nounits,noheader"],
|
81 |
-
capture_output=True, text=True
|
82 |
-
)
|
83 |
-
if gpu_info.returncode == 0:
|
84 |
-
used, total, util = gpu_info.stdout.strip().split(", ")
|
85 |
-
logger.info(f"[{tag}] GPU: {used}MB/{total}MB | Util: {util}%")
|
86 |
-
except Exception as e:
|
87 |
-
logger.error(f"[{tag}] Resource monitoring failed: {e}")
|
88 |
-
|
89 |
-
# ==================== FILE PROCESSING ====================
|
90 |
class FileProcessor:
|
|
|
|
|
91 |
@staticmethod
|
92 |
-
def
|
93 |
-
"""Extract text from PDF with
|
94 |
-
cache_key = f"pdf_{get_file_hash(file_path)}"
|
95 |
-
if cache_key in cache:
|
96 |
-
return cache[cache_key]
|
97 |
-
|
98 |
try:
|
99 |
with pdfplumber.open(file_path) as pdf:
|
100 |
total_pages = len(pdf.pages)
|
101 |
if not total_pages:
|
102 |
return ""
|
103 |
|
104 |
-
def
|
105 |
results = []
|
106 |
with pdfplumber.open(file_path) as pdf:
|
107 |
for page in pdf.pages[start:end]:
|
@@ -110,193 +66,180 @@ class FileProcessor:
|
|
110 |
results.append((page_num, f"=== Page {page_num + 1} ===\n{text.strip()}"))
|
111 |
return results
|
112 |
|
113 |
-
batch_size = 10
|
114 |
-
batches = [(i, min(i+batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
|
115 |
text_chunks = [""] * total_pages
|
116 |
|
117 |
-
with ThreadPoolExecutor(max_workers=
|
118 |
-
futures = [executor.submit(
|
119 |
for future in as_completed(futures):
|
120 |
for page_num, text in future.result():
|
121 |
text_chunks[page_num] = text
|
122 |
|
123 |
-
|
124 |
-
cache[cache_key] = result
|
125 |
-
return result
|
126 |
except Exception as e:
|
127 |
-
logger.error(f"PDF
|
128 |
return f"PDF processing error: {str(e)}"
|
129 |
|
130 |
@staticmethod
|
131 |
-
def
|
132 |
-
"""
|
133 |
-
cache_key = f"excel_{get_file_hash(file_path)}"
|
134 |
-
if cache_key in cache:
|
135 |
-
return cache[cache_key]
|
136 |
-
|
137 |
-
try:
|
138 |
-
df = pd.read_excel(file_path, engine='openpyxl', header=None, dtype=str)
|
139 |
-
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
|
140 |
-
result = [{"filename": os.path.basename(file_path), "rows": content, "type": "excel"}]
|
141 |
-
cache[cache_key] = result
|
142 |
-
return result
|
143 |
-
except Exception as e:
|
144 |
-
logger.error(f"Excel processing error: {e}")
|
145 |
-
return [{"error": f"Excel processing error: {str(e)}"}]
|
146 |
-
|
147 |
-
@staticmethod
|
148 |
-
def csv_to_data(file_path: str, cache: Cache) -> List[Dict]:
|
149 |
-
"""Convert CSV file to structured data with caching"""
|
150 |
-
cache_key = f"csv_{get_file_hash(file_path)}"
|
151 |
-
if cache_key in cache:
|
152 |
-
return cache[cache_key]
|
153 |
-
|
154 |
try:
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
except Exception as e:
|
168 |
-
logger.error(f"
|
169 |
-
return [{"error": f"
|
170 |
|
171 |
@classmethod
|
172 |
-
def
|
173 |
"""Route file processing based on type"""
|
174 |
-
|
175 |
-
"pdf": cls.
|
176 |
-
"xls": cls.
|
177 |
-
"xlsx": cls.
|
178 |
-
"csv": cls.
|
179 |
}
|
180 |
|
181 |
-
if file_type not in
|
182 |
return [{"error": f"Unsupported file type: {file_type}"}]
|
183 |
|
184 |
try:
|
185 |
-
result =
|
186 |
if file_type == "pdf":
|
187 |
return [{
|
188 |
"filename": os.path.basename(file_path),
|
189 |
"content": result,
|
190 |
-
"status": "initial",
|
191 |
"type": "pdf"
|
192 |
}]
|
193 |
return result
|
194 |
except Exception as e:
|
195 |
-
logger.error(f"
|
196 |
-
return [{"error": f"
|
197 |
|
198 |
-
|
199 |
-
|
|
|
200 |
def __init__(self):
|
201 |
self.tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
|
202 |
self.cache = Cache(DIRECTORIES["cache"], size_limit=10*1024**3)
|
203 |
-
|
204 |
-
def
|
205 |
"""Split text into token-limited chunks"""
|
206 |
tokens = self.tokenizer.encode(text)
|
207 |
return [
|
208 |
self.tokenizer.decode(tokens[i:i+max_tokens])
|
209 |
for i in range(0, len(tokens), max_tokens)
|
210 |
]
|
211 |
-
|
212 |
-
def
|
213 |
"""Clean and format model response"""
|
214 |
-
text =
|
215 |
-
text = re.sub(
|
|
|
|
|
|
|
|
|
216 |
|
217 |
diagnoses = []
|
218 |
-
|
219 |
|
220 |
for line in text.splitlines():
|
221 |
line = line.strip()
|
222 |
if not line:
|
223 |
continue
|
224 |
if re.match(r"###\s*Missed Diagnoses", line):
|
225 |
-
|
226 |
continue
|
227 |
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
|
228 |
-
|
229 |
continue
|
230 |
-
if
|
231 |
diagnosis = re.sub(r"^\-\s*", "", line).strip()
|
232 |
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
|
233 |
diagnoses.append(diagnosis)
|
234 |
|
235 |
return " ".join(diagnoses) if diagnoses else ""
|
236 |
-
|
237 |
-
def
|
238 |
-
"""
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
for chunk in chunks:
|
243 |
chunk = chunk.strip()
|
244 |
if not chunk or "No oversights identified" in chunk:
|
245 |
continue
|
246 |
|
247 |
-
|
248 |
for line in chunk.splitlines():
|
249 |
line = line.strip()
|
250 |
if not line:
|
251 |
continue
|
252 |
if re.match(r"###\s*Missed Diagnoses", line):
|
253 |
-
|
254 |
continue
|
255 |
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
|
256 |
-
|
257 |
continue
|
258 |
-
if
|
259 |
-
|
260 |
-
if
|
261 |
-
|
262 |
|
263 |
-
|
264 |
|
265 |
-
if not
|
266 |
-
return "No
|
267 |
|
268 |
-
if len(
|
269 |
-
summary = "
|
270 |
-
summary += f", and {
|
271 |
else:
|
272 |
-
summary = "
|
273 |
|
274 |
-
return summary + "
|
275 |
|
276 |
-
|
277 |
-
|
|
|
278 |
def __init__(self):
|
279 |
-
self.agent = self.
|
280 |
-
self.text_processor = TextProcessor()
|
281 |
self.file_processor = FileProcessor()
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
""
|
288 |
-
|
289 |
-
|
|
|
|
|
|
|
|
|
290 |
|
291 |
-
tool_path = os.path.join(DIRECTORIES["tools"], "new_tool.json")
|
292 |
-
if not os.path.exists(tool_path):
|
293 |
-
default_tools = os.path.abspath("data/new_tool.json")
|
294 |
-
shutil.copy(default_tools, tool_path)
|
295 |
-
|
296 |
agent = TxAgent(
|
297 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
298 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
299 |
-
tool_files_dict={"new_tool": tool_path},
|
300 |
force_finish=True,
|
301 |
enable_checker=False,
|
302 |
step_rag_num=4,
|
@@ -305,785 +248,299 @@ class ClinicalOversightApp:
|
|
305 |
)
|
306 |
agent.init_model()
|
307 |
|
308 |
-
|
309 |
-
logger.info("
|
310 |
return agent
|
311 |
-
|
312 |
-
def
|
313 |
-
"""
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
log_system_resources("After Cleanup")
|
333 |
-
|
334 |
-
def process_response_stream(self, prompt: str, history: List[dict]) -> Generator[dict, None, None]:
|
335 |
-
"""Stream the agent's response with proper formatting"""
|
336 |
full_response = ""
|
337 |
for chunk in self.agent.run_gradio_chat(prompt, [], 0.2, 512, 2048, False, []):
|
338 |
if not chunk:
|
339 |
continue
|
340 |
|
341 |
if isinstance(chunk, list):
|
342 |
-
for
|
343 |
-
if hasattr(
|
344 |
-
cleaned = self.
|
345 |
if cleaned:
|
346 |
full_response += cleaned + " "
|
347 |
-
yield {
|
348 |
-
"role": "assistant",
|
349 |
-
"content": f"✅ {cleaned} [{datetime.now().strftime('%H:%M:%S')}]"
|
350 |
-
}
|
351 |
elif isinstance(chunk, str) and chunk.strip():
|
352 |
-
cleaned = self.
|
353 |
if cleaned:
|
354 |
full_response += cleaned + " "
|
355 |
-
yield {
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
|
367 |
try:
|
368 |
-
# Add user message
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
})
|
373 |
-
yield (chatbot_output, download_output, final_summary, progress_text)
|
374 |
|
375 |
-
# Process
|
376 |
extracted = []
|
377 |
-
|
378 |
|
379 |
if files:
|
380 |
-
with ThreadPoolExecutor(max_workers=
|
381 |
futures = []
|
382 |
for f in files:
|
383 |
-
file_type = f.name.
|
384 |
-
futures.append(executor.submit(
|
|
|
|
|
|
|
|
|
385 |
|
386 |
for i, future in enumerate(as_completed(futures), 1):
|
387 |
try:
|
388 |
extracted.extend(future.result())
|
389 |
-
|
390 |
-
yield
|
391 |
except Exception as e:
|
392 |
-
logger.error(f"File processing
|
393 |
-
extracted.append({"error":
|
394 |
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
|
|
|
|
|
|
399 |
})
|
400 |
-
|
401 |
-
yield (chatbot_output, download_output, final_summary, progress_text)
|
402 |
|
403 |
# Analyze content
|
404 |
text_content = "\n".join(json.dumps(item) for item in extracted)
|
405 |
-
chunks = self.
|
406 |
-
|
407 |
|
408 |
-
for
|
409 |
prompt = f"""
|
410 |
-
Analyze this
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
{
|
|
|
417 |
"""
|
418 |
-
|
419 |
-
|
420 |
-
|
|
|
|
|
|
|
421 |
|
422 |
-
# Stream
|
423 |
chunk_response = ""
|
424 |
-
for update in self.
|
425 |
-
|
426 |
chunk_response = update["content"]
|
427 |
-
|
428 |
-
|
|
|
|
|
|
|
429 |
|
430 |
-
|
431 |
-
|
|
|
432 |
|
433 |
-
#
|
434 |
-
|
435 |
-
report_path =
|
436 |
|
437 |
if report_path:
|
438 |
with open(report_path, "w", encoding="utf-8") as f:
|
439 |
-
f.write(
|
440 |
|
441 |
-
|
442 |
-
|
443 |
-
|
|
|
|
|
|
|
444 |
|
445 |
except Exception as e:
|
446 |
-
logger.error(f"Analysis
|
447 |
-
|
448 |
-
|
449 |
-
"
|
|
|
|
|
450 |
})
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
finally:
|
455 |
-
self.cleanup_resources()
|
456 |
-
|
457 |
-
def _update_progress(self, current: int, total: int, stage: str = "") -> Dict[str, Any]:
|
458 |
"""Format progress update for UI"""
|
459 |
-
|
460 |
-
return {"value":
|
461 |
-
|
462 |
-
def
|
463 |
-
"""
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
--primary-dark: #0056b3;
|
479 |
-
--border-radius: 12px;
|
480 |
-
--transition: all 0.3s ease;
|
481 |
-
--shadow: 0 4px 12px rgba(0,0,0,0.15);
|
482 |
-
--font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
|
483 |
-
--background: #ffffff;
|
484 |
-
--text-color: #333333;
|
485 |
-
--chat-bg: #f9fafb;
|
486 |
-
--message-bg: #e5e5ea;
|
487 |
-
--sidebar-bg: rgba(241, 243, 245, 0.9);
|
488 |
-
--sidebar-dark-bg: rgba(42, 54, 80, 0.9);
|
489 |
-
}
|
490 |
-
|
491 |
-
[data-theme="dark"] {
|
492 |
-
--background: #1e2a44;
|
493 |
-
--text-color: #ffffff;
|
494 |
-
--chat-bg: #2d3b55;
|
495 |
-
--message-bg: #3e4c6a;
|
496 |
-
--sidebar-bg: var(--sidebar-dark-bg);
|
497 |
-
}
|
498 |
-
|
499 |
-
body, .gradio-container {
|
500 |
-
font-family: var(--font-family);
|
501 |
-
background: var(--background);
|
502 |
-
color: var(--text-color);
|
503 |
-
margin: 0;
|
504 |
-
padding: 0;
|
505 |
-
transition: var(--transition);
|
506 |
-
}
|
507 |
-
|
508 |
-
/* ==================== LAYOUT ==================== */
|
509 |
-
.gradio-container {
|
510 |
-
max-width: 900px;
|
511 |
-
margin: 0 auto;
|
512 |
-
padding: 1.5rem;
|
513 |
-
display: flex;
|
514 |
-
flex-direction: column;
|
515 |
-
gap: 1.5rem;
|
516 |
-
}
|
517 |
-
|
518 |
-
.chat-container {
|
519 |
-
background: var(--chat-bg);
|
520 |
-
border-radius: var(--border-radius);
|
521 |
-
padding: 1.5rem;
|
522 |
-
min-height: 60vh;
|
523 |
-
max-height: 80vh;
|
524 |
-
overflow-y: auto;
|
525 |
-
box-shadow: var(--shadow);
|
526 |
-
position: relative;
|
527 |
-
margin-bottom: 5rem; /* Space for sticky input */
|
528 |
-
}
|
529 |
-
|
530 |
-
.header {
|
531 |
-
text-align: center;
|
532 |
-
margin-bottom: 1.5rem;
|
533 |
-
}
|
534 |
-
|
535 |
-
.header h1 {
|
536 |
-
font-size: 1.8rem;
|
537 |
-
margin: 0.5rem 0;
|
538 |
-
}
|
539 |
-
|
540 |
-
.header p {
|
541 |
-
font-size: 1rem;
|
542 |
-
opacity: 0.7;
|
543 |
-
}
|
544 |
-
|
545 |
-
/* ==================== COMPONENTS ==================== */
|
546 |
-
.chat__message {
|
547 |
-
margin: 0.75rem 0;
|
548 |
-
padding: 0.75rem 1rem;
|
549 |
-
border-radius: var(--border-radius);
|
550 |
-
max-width: 85%;
|
551 |
-
transition: var(--transition);
|
552 |
-
background: var(--message-bg);
|
553 |
-
border: 1px solid rgba(0,0,0,0.05);
|
554 |
-
animation: messageFade 0.3s ease;
|
555 |
-
}
|
556 |
-
|
557 |
-
.chat__message:hover {
|
558 |
-
transform: translateY(-2px);
|
559 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
560 |
-
}
|
561 |
-
|
562 |
-
.chat__message.user {
|
563 |
-
background: linear-gradient(135deg, var(--primary-color), var(--primary-dark));
|
564 |
-
color: white;
|
565 |
-
margin-left: auto;
|
566 |
-
}
|
567 |
-
|
568 |
-
.chat__message.assistant {
|
569 |
-
background: var(--message-bg);
|
570 |
-
color: var(--text-color);
|
571 |
-
}
|
572 |
-
|
573 |
-
.chat__message-timestamp {
|
574 |
-
font-size: 0.75rem;
|
575 |
-
opacity: 0.7;
|
576 |
-
margin-top: 0.25rem;
|
577 |
-
text-align: right;
|
578 |
-
}
|
579 |
-
|
580 |
-
.input-container {
|
581 |
-
display: flex;
|
582 |
-
align-items: center;
|
583 |
-
gap: 0.75rem;
|
584 |
-
background: var(--chat-bg);
|
585 |
-
padding: 0.75rem 1rem;
|
586 |
-
border-radius: 1.5rem;
|
587 |
-
box-shadow: var(--shadow);
|
588 |
-
position: sticky;
|
589 |
-
bottom: 1rem;
|
590 |
-
z-index: 10;
|
591 |
-
}
|
592 |
-
|
593 |
-
.input-textbox {
|
594 |
-
flex-grow: 1;
|
595 |
-
border: none;
|
596 |
-
background: transparent;
|
597 |
-
color: var(--text-color);
|
598 |
-
outline: none;
|
599 |
-
font-size: 1rem;
|
600 |
-
}
|
601 |
-
|
602 |
-
.input-textbox:focus {
|
603 |
-
border-bottom: 2px solid var(--primary-color);
|
604 |
-
}
|
605 |
-
|
606 |
-
.send-btn {
|
607 |
-
background: linear-gradient(135deg, var(--primary-color), var(--primary-dark));
|
608 |
-
color: white;
|
609 |
-
border: none;
|
610 |
-
border-radius: 1rem;
|
611 |
-
padding: 0.5rem 1.25rem;
|
612 |
-
font-size: 0.9rem;
|
613 |
-
transition: var(--transition);
|
614 |
-
}
|
615 |
-
|
616 |
-
.send-btn:hover {
|
617 |
-
transform: scale(1.05);
|
618 |
-
}
|
619 |
-
|
620 |
-
.send-btn:active {
|
621 |
-
animation: glow 0.3s ease;
|
622 |
-
}
|
623 |
-
|
624 |
-
.sidebar {
|
625 |
-
background: var(--sidebar-bg);
|
626 |
-
padding: 1.5rem;
|
627 |
-
border-radius: var(--border-radius);
|
628 |
-
box-shadow: var(--shadow);
|
629 |
-
transition: transform 0.4s ease, opacity 0.4s ease;
|
630 |
-
position: fixed;
|
631 |
-
right: 1rem;
|
632 |
-
top: 5rem;
|
633 |
-
width: 320px;
|
634 |
-
max-height: calc(100vh - 6rem);
|
635 |
-
overflow-y: auto;
|
636 |
-
z-index: 1000;
|
637 |
-
animation: fadeInUp 0.4s ease;
|
638 |
-
}
|
639 |
-
|
640 |
-
.sidebar-hidden {
|
641 |
-
transform: translateX(100%);
|
642 |
-
opacity: 0;
|
643 |
-
}
|
644 |
-
|
645 |
-
.sidebar-backdrop {
|
646 |
-
position: fixed;
|
647 |
-
top: 0;
|
648 |
-
left: 0;
|
649 |
-
width: 100%;
|
650 |
-
height: 100%;
|
651 |
-
background: rgba(0,0,0,0.4);
|
652 |
-
z-index: 999;
|
653 |
-
opacity: 0;
|
654 |
-
transition: opacity 0.4s ease;
|
655 |
-
pointer-events: none;
|
656 |
-
}
|
657 |
-
|
658 |
-
.sidebar:not(.sidebar-hidden) ~ .sidebar-backdrop {
|
659 |
-
opacity: 1;
|
660 |
-
pointer-events: auto;
|
661 |
-
}
|
662 |
-
|
663 |
-
.sidebar__tooltip, .file-tooltip {
|
664 |
-
display: block;
|
665 |
-
margin-bottom: 1rem;
|
666 |
-
}
|
667 |
-
|
668 |
-
.sidebar__tooltip:hover::after, .file-tooltip:hover::after {
|
669 |
-
content: attr(data-tip);
|
670 |
-
position: absolute;
|
671 |
-
top: -2.5rem;
|
672 |
-
left: 50%;
|
673 |
-
transform: translateX(-50%);
|
674 |
-
background: #333;
|
675 |
-
color: white;
|
676 |
-
padding: 0.4rem 0.8rem;
|
677 |
-
border-radius: 0.4rem;
|
678 |
-
font-size: 0.85rem;
|
679 |
-
max-width: 200px;
|
680 |
-
white-space: normal;
|
681 |
-
text-align: center;
|
682 |
-
z-index: 1000;
|
683 |
-
animation: fadeIn 0.3s ease;
|
684 |
-
}
|
685 |
-
|
686 |
-
.theme-toggle {
|
687 |
-
background: linear-gradient(135deg, var(--primary-color), var(--primary-dark));
|
688 |
-
color: white;
|
689 |
-
border: none;
|
690 |
-
border-radius: 1rem;
|
691 |
-
padding: 0.5rem 1rem;
|
692 |
-
font-size: 0.9rem;
|
693 |
-
position: fixed;
|
694 |
-
top: 1rem;
|
695 |
-
right: 1rem;
|
696 |
-
z-index: 100;
|
697 |
-
display: flex;
|
698 |
-
align-items: center;
|
699 |
-
gap: 0.5rem;
|
700 |
-
}
|
701 |
-
|
702 |
-
.tools-button {
|
703 |
-
background: var(--message-bg);
|
704 |
-
color: var(--text-color);
|
705 |
-
border: none;
|
706 |
-
border-radius: 1rem;
|
707 |
-
padding: 0.5rem 1.25rem;
|
708 |
-
font-size: 0.9rem;
|
709 |
-
transition: var(--transition);
|
710 |
-
}
|
711 |
-
|
712 |
-
.tools-button:hover {
|
713 |
-
background: var(--primary-color);
|
714 |
-
color: white;
|
715 |
-
}
|
716 |
-
|
717 |
-
.loading-spinner {
|
718 |
-
position: absolute;
|
719 |
-
bottom: 4rem;
|
720 |
-
left: 50%;
|
721 |
-
transform: translateX(-50%);
|
722 |
-
font-size: 1.2rem;
|
723 |
-
animation: glow 1.5s ease infinite;
|
724 |
-
}
|
725 |
-
|
726 |
-
.typing-indicator {
|
727 |
-
display: none;
|
728 |
-
font-size: 0.9rem;
|
729 |
-
color: var(--text-color);
|
730 |
-
opacity: 0.7;
|
731 |
-
margin: 0.75rem;
|
732 |
-
}
|
733 |
-
|
734 |
-
.typing-indicator.active {
|
735 |
-
display: block;
|
736 |
-
animation: blink 1s step-end infinite;
|
737 |
-
}
|
738 |
-
|
739 |
-
.progress-text {
|
740 |
-
position: relative;
|
741 |
-
padding: 0.5rem;
|
742 |
-
background: var(--message-bg);
|
743 |
-
border-radius: var(--border-radius);
|
744 |
-
margin-top: 0.75rem;
|
745 |
-
overflow: hidden;
|
746 |
-
}
|
747 |
-
|
748 |
-
.progress-text::before {
|
749 |
-
content: '';
|
750 |
-
position: absolute;
|
751 |
-
top: 0;
|
752 |
-
left: 0;
|
753 |
-
height: 100%;
|
754 |
-
width: 0;
|
755 |
-
background: linear-gradient(to right, var(--primary-color), var(--primary-dark));
|
756 |
-
opacity: 0.3;
|
757 |
-
animation: progress 2s ease-in-out infinite;
|
758 |
-
}
|
759 |
-
|
760 |
-
/* ==================== ANIMATIONS ==================== */
|
761 |
-
@keyframes glow {
|
762 |
-
0%, 100% { transform: translateX(-50%) scale(1); opacity: 1; color: var(--primary-color); }
|
763 |
-
50% { transform: translateX(-50%) scale(1.2); opacity: 0.7; color: var(--primary-dark); }
|
764 |
-
}
|
765 |
-
|
766 |
-
@keyframes blink {
|
767 |
-
50% { opacity: 0.3; }
|
768 |
-
}
|
769 |
-
|
770 |
-
@keyframes fadeIn {
|
771 |
-
from { opacity: 0; }
|
772 |
-
to { opacity: 1; }
|
773 |
-
}
|
774 |
-
|
775 |
-
@keyframes fadeInUp {
|
776 |
-
from { opacity: 0; transform: translateY(20px); }
|
777 |
-
to { opacity: 1; transform: translateY(0); }
|
778 |
-
}
|
779 |
-
|
780 |
-
@keyframes messageFade {
|
781 |
-
from { opacity: 0; transform: translateY(10px) scale(0.95); }
|
782 |
-
to { opacity: 1; transform: translateY(0) scale(1); }
|
783 |
-
}
|
784 |
-
|
785 |
-
@keyframes progress {
|
786 |
-
0% { width: 0; }
|
787 |
-
50% { width: 60%; }
|
788 |
-
100% { width: 0; }
|
789 |
-
}
|
790 |
-
|
791 |
-
/* ==================== MEDIA QUERIES ==================== */
|
792 |
-
@media (max-width: 768px) {
|
793 |
-
.gradio-container {
|
794 |
-
padding: 1rem;
|
795 |
-
}
|
796 |
-
|
797 |
-
.chat-container {
|
798 |
-
min-height: 50vh;
|
799 |
-
max-height: 70vh;
|
800 |
-
margin-bottom: 4rem;
|
801 |
-
}
|
802 |
-
|
803 |
-
.sidebar {
|
804 |
-
width: 100%;
|
805 |
-
right: 0;
|
806 |
-
top: 4rem;
|
807 |
-
max-height: calc(100vh - 4rem);
|
808 |
-
}
|
809 |
-
|
810 |
-
.theme-toggle {
|
811 |
-
top: 0.5rem;
|
812 |
-
right: 0.5rem;
|
813 |
-
padding: 0.4rem 0.8rem;
|
814 |
-
font-size: 0.85rem;
|
815 |
-
}
|
816 |
-
|
817 |
-
.input-container {
|
818 |
-
gap: 0.5rem;
|
819 |
-
padding: 0.5rem;
|
820 |
}
|
821 |
-
|
822 |
-
|
823 |
-
|
|
|
|
|
824 |
}
|
825 |
-
}
|
826 |
-
|
827 |
-
@media (max-width: 480px) {
|
828 |
.chat-container {
|
829 |
-
|
830 |
-
|
831 |
-
}
|
832 |
-
|
833 |
-
.input-container {
|
834 |
-
flex-direction: column;
|
835 |
-
padding: 0.5rem;
|
836 |
-
}
|
837 |
-
|
838 |
-
.input-textbox {
|
839 |
-
font-size: 0.9rem;
|
840 |
-
}
|
841 |
-
|
842 |
-
.send-btn {
|
843 |
-
width: 100%;
|
844 |
-
padding: 0.5rem;
|
845 |
-
font-size: 0.85rem;
|
846 |
}
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
max-height: calc(100vh - 3.5rem);
|
864 |
-
animation: fadeInUp 0.4s ease;
|
865 |
-
}
|
866 |
-
|
867 |
-
.sidebar__tooltip:hover::after, .file-tooltip:hover::after {
|
868 |
-
top: auto;
|
869 |
-
bottom: -2.5rem;
|
870 |
-
max-width: 80vw;
|
871 |
-
}
|
872 |
-
}
|
873 |
-
"""
|
874 |
-
|
875 |
-
js = """
|
876 |
-
function applyTheme(theme) {
|
877 |
-
document.documentElement.setAttribute('data-theme', theme);
|
878 |
-
localStorage.setItem('theme', theme);
|
879 |
-
document.querySelector('.theme-toggle').innerHTML = theme === 'dark' ? '☀️ Light Mode' : '🌙 Dark Mode';
|
880 |
-
}
|
881 |
-
|
882 |
-
function toggleSidebar() {
|
883 |
-
const sidebar = document.querySelector('.sidebar');
|
884 |
-
sidebar.classList.toggle('sidebar-hidden');
|
885 |
-
if (!sidebar.classList.contains('sidebar-hidden')) {
|
886 |
-
setTimeout(() => {
|
887 |
-
if (window.innerWidth <= 600) {
|
888 |
-
sidebar.classList.add('sidebar-hidden');
|
889 |
-
}
|
890 |
-
}, 5000);
|
891 |
-
}
|
892 |
-
}
|
893 |
-
|
894 |
-
document.addEventListener('DOMContentLoaded', () => {
|
895 |
-
const savedTheme = localStorage.getItem('theme') || 'light';
|
896 |
-
applyTheme(savedTheme);
|
897 |
-
document.querySelector('.sidebar').classList.add('sidebar-hidden');
|
898 |
-
});
|
899 |
-
"""
|
900 |
-
|
901 |
-
with gr.Blocks(theme=gr.themes.Default(), css=css, js=js, title="Clinical Oversight Assistant") as app:
|
902 |
-
try:
|
903 |
-
theme_state = gr.State(value="light")
|
904 |
-
sidebar_state = gr.State(value=False)
|
905 |
-
|
906 |
-
gr.HTML("""
|
907 |
-
<div class='header'>
|
908 |
-
<h1 style='color: var(--text-color);'>🩺 Clinical Oversight Assistant</h1>
|
909 |
-
<p style='color: var(--text-color); opacity: 0.7;'>
|
910 |
-
AI-powered analysis of patient records for missed diagnoses
|
911 |
-
</p>
|
912 |
-
</div>
|
913 |
-
<div class='sidebar-backdrop'></div>
|
914 |
-
""")
|
915 |
-
|
916 |
-
theme_button = gr.Button("🌙 Dark Mode", elem_classes="theme-toggle")
|
917 |
-
|
918 |
-
with gr.Column(elem_classes="chat-container"):
|
919 |
chatbot = gr.Chatbot(
|
920 |
-
label="
|
921 |
-
height=
|
922 |
show_copy_button=True,
|
|
|
|
|
|
|
|
|
|
|
923 |
type="messages",
|
924 |
-
elem_classes="
|
925 |
-
render_markdown=True
|
926 |
-
)
|
927 |
-
gr.HTML("<div class='loading-spinner' style='display: none;'>⏳</div>")
|
928 |
-
gr.HTML("<div class='typing-indicator'>Typing...</div>")
|
929 |
-
|
930 |
-
with gr.Row():
|
931 |
-
tools_button = gr.Button("📂 Tools", variant="secondary", elem_classes="tools-button")
|
932 |
-
|
933 |
-
with gr.Column(elem_classes="sidebar"):
|
934 |
-
gr.Markdown(
|
935 |
-
"<div class='sidebar__tooltip' data-tip='Upload patient records'>### 📎 Upload Records</div>",
|
936 |
-
elem_classes="markdown-tooltip"
|
937 |
)
|
938 |
-
gr.HTML(
|
939 |
-
"<div class='file-tooltip' data-tip='Select PDF, CSV, or Excel files'>"
|
940 |
-
)
|
941 |
-
file_upload = gr.File(
|
942 |
-
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
|
943 |
-
file_count="multiple",
|
944 |
-
label="Patient Records",
|
945 |
-
elem_classes="file-input"
|
946 |
-
)
|
947 |
-
gr.HTML("</div>")
|
948 |
-
gr.Markdown(
|
949 |
-
"<div class='sidebar__tooltip' data-tip='Summary of findings'>### 📝 Analysis Summary</div>",
|
950 |
-
elem_classes="markdown-tooltip"
|
951 |
-
)
|
952 |
-
final_summary = gr.Markdown(
|
953 |
-
"<div class='sidebar__tooltip' data-tip='View analysis results'>Analysis results will appear here...</div>",
|
954 |
-
elem_classes="markdown-tooltip"
|
955 |
-
)
|
956 |
-
gr.Markdown(
|
957 |
-
"<div class='sidebar__tooltip' data-tip='Download full report'>### 📄 Full Report</div>",
|
958 |
-
elem_classes="markdown-tooltip"
|
959 |
-
)
|
960 |
-
gr.HTML(
|
961 |
-
"<div class='file-tooltip' data-tip='Download analysis report'>"
|
962 |
-
)
|
963 |
-
download_output = gr.File(
|
964 |
-
label="Download Report",
|
965 |
-
visible=False,
|
966 |
-
interactive=False,
|
967 |
-
elem_classes="file-output"
|
968 |
-
)
|
969 |
-
gr.HTML("</div>")
|
970 |
-
|
971 |
-
with gr.Row(elem_classes="input-container"):
|
972 |
-
msg_input = gr.Textbox(
|
973 |
-
placeholder="Ask about potential oversights or upload files...",
|
974 |
-
show_label=False,
|
975 |
-
container=False,
|
976 |
-
elem_classes="input-textbox",
|
977 |
-
autofocus=True
|
978 |
-
)
|
979 |
-
send_btn = gr.Button(
|
980 |
-
"Analyze",
|
981 |
-
variant="primary",
|
982 |
-
elem_classes="send-btn"
|
983 |
-
)
|
984 |
-
|
985 |
-
progress_text = gr.Textbox(
|
986 |
-
label="Progress Status",
|
987 |
-
visible=False,
|
988 |
-
interactive=False,
|
989 |
-
elem_classes="progress-text"
|
990 |
-
)
|
991 |
|
992 |
-
|
993 |
-
|
994 |
-
|
995 |
-
"
|
996 |
-
|
997 |
-
|
998 |
-
|
999 |
-
|
1000 |
-
|
1001 |
-
|
1002 |
-
|
1003 |
-
|
1004 |
-
|
1005 |
-
|
1006 |
-
|
1007 |
-
|
1008 |
-
|
1009 |
-
|
1010 |
-
|
1011 |
-
|
1012 |
-
|
1013 |
-
|
1014 |
-
|
1015 |
-
|
1016 |
)
|
1017 |
|
1018 |
-
|
1019 |
-
|
1020 |
-
|
1021 |
-
|
1022 |
-
|
1023 |
-
|
1024 |
-
|
1025 |
-
inputs=[gr.State(value=True)],
|
1026 |
-
outputs=[chatbot]
|
1027 |
-
).then(
|
1028 |
-
fn=self.analyze,
|
1029 |
-
inputs=[msg_input, chatbot, file_upload],
|
1030 |
-
outputs=[chatbot, download_output, final_summary, progress_text],
|
1031 |
-
show_progress="hidden"
|
1032 |
-
).then(
|
1033 |
-
fn=show_loading,
|
1034 |
-
inputs=[gr.State(value=False)],
|
1035 |
-
outputs=[chatbot]
|
1036 |
-
).then(
|
1037 |
-
fn=show_typing,
|
1038 |
-
inputs=[gr.State(value=False)],
|
1039 |
-
outputs=[chatbot]
|
1040 |
)
|
1041 |
-
|
1042 |
-
|
1043 |
-
|
1044 |
-
|
1045 |
-
|
1046 |
-
).then(
|
1047 |
-
fn=show_typing,
|
1048 |
-
inputs=[gr.State(value=True)],
|
1049 |
-
outputs=[chatbot]
|
1050 |
-
).then(
|
1051 |
-
fn=self.analyze,
|
1052 |
-
inputs=[msg_input, chatbot, file_upload],
|
1053 |
-
outputs=[chatbot, download_output, final_summary, progress_text],
|
1054 |
-
show_progress="hidden"
|
1055 |
-
).then(
|
1056 |
-
fn=show_loading,
|
1057 |
-
inputs=[gr.State(value=False)],
|
1058 |
-
outputs=[chatbot]
|
1059 |
-
).then(
|
1060 |
-
fn=show_typing,
|
1061 |
-
inputs=[gr.State(value=False)],
|
1062 |
-
outputs=[chatbot]
|
1063 |
-
)
|
1064 |
-
|
1065 |
-
app.load(
|
1066 |
-
fn=lambda: [
|
1067 |
-
[], None, "<div class='sidebar__tooltip' data-tip='View analysis results'>Analysis results will appear here...</div>",
|
1068 |
-
"", None, {"visible": False}, "light", False, "🌙 Dark Mode"
|
1069 |
-
],
|
1070 |
-
outputs=[chatbot, download_output, final_summary, msg_input, file_upload, progress_text, theme_state, sidebar_state, theme_button],
|
1071 |
-
queue=False
|
1072 |
)
|
1073 |
|
1074 |
-
|
1075 |
-
|
1076 |
-
|
1077 |
-
|
1078 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1079 |
|
1080 |
# ==================== APPLICATION ENTRY POINT ====================
|
1081 |
if __name__ == "__main__":
|
1082 |
-
app = None
|
1083 |
try:
|
1084 |
-
logger.info("
|
1085 |
-
|
1086 |
-
interface =
|
1087 |
|
1088 |
interface.queue(
|
1089 |
api_open=False,
|
@@ -1092,12 +549,12 @@ if __name__ == "__main__":
|
|
1092 |
server_name="0.0.0.0",
|
1093 |
server_port=7860,
|
1094 |
show_error=True,
|
1095 |
-
allowed_paths=[DIRECTORIES["reports"]],
|
1096 |
share=False
|
1097 |
)
|
1098 |
except Exception as e:
|
1099 |
logger.error(f"Application failed to start: {e}")
|
1100 |
raise
|
1101 |
finally:
|
1102 |
-
if
|
1103 |
-
|
|
|
4 |
import pdfplumber
|
5 |
import json
|
6 |
import gradio as gr
|
7 |
+
from typing import List, Dict, Generator, Any, Optional
|
8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
import shutil
|
|
|
14 |
import logging
|
15 |
import torch
|
16 |
import gc
|
|
|
|
|
17 |
from diskcache import Cache
|
18 |
from transformers import AutoTokenizer
|
19 |
+
from pathlib import Path
|
20 |
|
21 |
# ==================== CONFIGURATION ====================
|
|
|
22 |
logging.basicConfig(level=logging.INFO)
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
25 |
+
# Directory Setup
|
26 |
+
BASE_DIR = Path("/data/hf_cache")
|
27 |
DIRECTORIES = {
|
28 |
+
"models": BASE_DIR / "txagent_models",
|
29 |
+
"tools": BASE_DIR / "tool_cache",
|
30 |
+
"cache": BASE_DIR / "cache",
|
31 |
+
"reports": BASE_DIR / "reports",
|
32 |
+
"vllm": BASE_DIR / "vllm_cache"
|
33 |
}
|
34 |
|
|
|
35 |
for dir_path in DIRECTORIES.values():
|
36 |
+
dir_path.mkdir(parents=True, exist_ok=True)
|
37 |
|
38 |
+
# Environment Configuration
|
39 |
os.environ.update({
|
40 |
+
"HF_HOME": str(DIRECTORIES["models"]),
|
41 |
+
"TRANSFORMERS_CACHE": str(DIRECTORIES["models"]),
|
42 |
+
"VLLM_CACHE_DIR": str(DIRECTORIES["vllm"]),
|
43 |
"TOKENIZERS_PARALLELISM": "false",
|
44 |
"CUDA_LAUNCH_BLOCKING": "1"
|
45 |
})
|
46 |
|
47 |
+
# ==================== CORE COMPONENTS ====================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
class FileProcessor:
|
49 |
+
"""Handles all file processing operations"""
|
50 |
+
|
51 |
@staticmethod
|
52 |
+
def extract_pdf_content(file_path: str) -> str:
|
53 |
+
"""Extract text from PDF with parallel processing"""
|
|
|
|
|
|
|
|
|
54 |
try:
|
55 |
with pdfplumber.open(file_path) as pdf:
|
56 |
total_pages = len(pdf.pages)
|
57 |
if not total_pages:
|
58 |
return ""
|
59 |
|
60 |
+
def process_batch(start: int, end: int) -> List[tuple]:
|
61 |
results = []
|
62 |
with pdfplumber.open(file_path) as pdf:
|
63 |
for page in pdf.pages[start:end]:
|
|
|
66 |
results.append((page_num, f"=== Page {page_num + 1} ===\n{text.strip()}"))
|
67 |
return results
|
68 |
|
69 |
+
batch_size = min(10, total_pages)
|
70 |
+
batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
|
71 |
text_chunks = [""] * total_pages
|
72 |
|
73 |
+
with ThreadPoolExecutor(max_workers=min(6, os.cpu_count() or 4)) as executor:
|
74 |
+
futures = [executor.submit(process_batch, start, end) for start, end in batches]
|
75 |
for future in as_completed(futures):
|
76 |
for page_num, text in future.result():
|
77 |
text_chunks[page_num] = text
|
78 |
|
79 |
+
return "\n\n".join(filter(None, text_chunks))
|
|
|
|
|
80 |
except Exception as e:
|
81 |
+
logger.error(f"PDF extraction failed: {e}")
|
82 |
return f"PDF processing error: {str(e)}"
|
83 |
|
84 |
@staticmethod
|
85 |
+
def process_tabular_data(file_path: str, file_type: str) -> List[Dict]:
|
86 |
+
"""Process Excel or CSV files"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
try:
|
88 |
+
if file_type == "csv":
|
89 |
+
chunks = pd.read_csv(
|
90 |
+
file_path,
|
91 |
+
header=None,
|
92 |
+
dtype=str,
|
93 |
+
encoding_errors='replace',
|
94 |
+
on_bad_lines='skip',
|
95 |
+
chunksize=10000
|
96 |
+
)
|
97 |
+
df = pd.concat(chunks) if chunks else pd.DataFrame()
|
98 |
+
else: # Excel
|
99 |
+
try:
|
100 |
+
df = pd.read_excel(file_path, engine='openpyxl', header=None, dtype=str)
|
101 |
+
except:
|
102 |
+
df = pd.read_excel(file_path, engine='xlrd', header=None, dtype=str)
|
103 |
|
104 |
+
return [{
|
105 |
+
"filename": os.path.basename(file_path),
|
106 |
+
"rows": df.where(pd.notnull(df), "").astype(str).values.tolist(),
|
107 |
+
"type": file_type
|
108 |
+
}]
|
109 |
except Exception as e:
|
110 |
+
logger.error(f"{file_type.upper()} processing failed: {e}")
|
111 |
+
return [{"error": f"{file_type.upper()} processing error: {str(e)}"}]
|
112 |
|
113 |
@classmethod
|
114 |
+
def handle_upload(cls, file_path: str, file_type: str) -> List[Dict]:
|
115 |
"""Route file processing based on type"""
|
116 |
+
processor_map = {
|
117 |
+
"pdf": cls.extract_pdf_content,
|
118 |
+
"xls": lambda x: cls.process_tabular_data(x, "excel"),
|
119 |
+
"xlsx": lambda x: cls.process_tabular_data(x, "excel"),
|
120 |
+
"csv": lambda x: cls.process_tabular_data(x, "csv")
|
121 |
}
|
122 |
|
123 |
+
if file_type not in processor_map:
|
124 |
return [{"error": f"Unsupported file type: {file_type}"}]
|
125 |
|
126 |
try:
|
127 |
+
result = processor_map[file_type](file_path)
|
128 |
if file_type == "pdf":
|
129 |
return [{
|
130 |
"filename": os.path.basename(file_path),
|
131 |
"content": result,
|
|
|
132 |
"type": "pdf"
|
133 |
}]
|
134 |
return result
|
135 |
except Exception as e:
|
136 |
+
logger.error(f"File processing failed: {e}")
|
137 |
+
return [{"error": f"File processing error: {str(e)}"}]
|
138 |
|
139 |
+
class TextAnalyzer:
|
140 |
+
"""Handles text processing and analysis"""
|
141 |
+
|
142 |
def __init__(self):
|
143 |
self.tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
|
144 |
self.cache = Cache(DIRECTORIES["cache"], size_limit=10*1024**3)
|
145 |
+
|
146 |
+
def chunk_content(self, text: str, max_tokens: int = 1800) -> List[str]:
|
147 |
"""Split text into token-limited chunks"""
|
148 |
tokens = self.tokenizer.encode(text)
|
149 |
return [
|
150 |
self.tokenizer.decode(tokens[i:i+max_tokens])
|
151 |
for i in range(0, len(tokens), max_tokens)
|
152 |
]
|
153 |
+
|
154 |
+
def clean_output(self, text: str) -> str:
|
155 |
"""Clean and format model response"""
|
156 |
+
text = text.encode("utf-8", "ignore").decode("utf-8")
|
157 |
+
text = re.sub(
|
158 |
+
r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\."
|
159 |
+
r"|Since the previous attempts.*?\.|I need to.*?medications\."
|
160 |
+
r"|Retrieving tools.*?\.", "", text, flags=re.DOTALL
|
161 |
+
)
|
162 |
|
163 |
diagnoses = []
|
164 |
+
in_section = False
|
165 |
|
166 |
for line in text.splitlines():
|
167 |
line = line.strip()
|
168 |
if not line:
|
169 |
continue
|
170 |
if re.match(r"###\s*Missed Diagnoses", line):
|
171 |
+
in_section = True
|
172 |
continue
|
173 |
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
|
174 |
+
in_section = False
|
175 |
continue
|
176 |
+
if in_section and re.match(r"-\s*.+", line):
|
177 |
diagnosis = re.sub(r"^\-\s*", "", line).strip()
|
178 |
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
|
179 |
diagnoses.append(diagnosis)
|
180 |
|
181 |
return " ".join(diagnoses) if diagnoses else ""
|
182 |
+
|
183 |
+
def generate_summary(self, analysis: str) -> str:
|
184 |
+
"""Create concise clinical summary"""
|
185 |
+
findings = []
|
186 |
+
for chunk in analysis.split("--- Analysis for Chunk"):
|
|
|
|
|
187 |
chunk = chunk.strip()
|
188 |
if not chunk or "No oversights identified" in chunk:
|
189 |
continue
|
190 |
|
191 |
+
in_section = False
|
192 |
for line in chunk.splitlines():
|
193 |
line = line.strip()
|
194 |
if not line:
|
195 |
continue
|
196 |
if re.match(r"###\s*Missed Diagnoses", line):
|
197 |
+
in_section = True
|
198 |
continue
|
199 |
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
|
200 |
+
in_section = False
|
201 |
continue
|
202 |
+
if in_section and re.match(r"-\s*.+", line):
|
203 |
+
finding = re.sub(r"^\-\s*", "", line).strip()
|
204 |
+
if finding and not re.match(r"No issues identified", finding, re.IGNORECASE):
|
205 |
+
findings.append(finding)
|
206 |
|
207 |
+
unique_findings = list(dict.fromkeys(findings))
|
208 |
|
209 |
+
if not unique_findings:
|
210 |
+
return "No clinical concerns identified in the provided records."
|
211 |
|
212 |
+
if len(unique_findings) > 1:
|
213 |
+
summary = "Potential concerns include: " + ", ".join(unique_findings[:-1])
|
214 |
+
summary += f", and {unique_findings[-1]}"
|
215 |
else:
|
216 |
+
summary = "Potential concern identified: " + unique_findings[0]
|
217 |
|
218 |
+
return summary + ". Recommend urgent clinical review."
|
219 |
|
220 |
+
class ClinicalAgent:
|
221 |
+
"""Main application controller"""
|
222 |
+
|
223 |
def __init__(self):
|
224 |
+
self.agent = self._init_agent()
|
|
|
225 |
self.file_processor = FileProcessor()
|
226 |
+
self.text_analyzer = TextAnalyzer()
|
227 |
+
|
228 |
+
def _init_agent(self) -> Any:
|
229 |
+
"""Initialize the AI agent"""
|
230 |
+
logger.info("Initializing clinical agent...")
|
231 |
+
self._log_system_status("pre-init")
|
232 |
+
|
233 |
+
tool_path = DIRECTORIES["tools"] / "new_tool.json"
|
234 |
+
if not tool_path.exists():
|
235 |
+
default_tools = Path("data/new_tool.json")
|
236 |
+
if default_tools.exists():
|
237 |
+
shutil.copy(default_tools, tool_path)
|
238 |
|
|
|
|
|
|
|
|
|
|
|
239 |
agent = TxAgent(
|
240 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
241 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
242 |
+
tool_files_dict={"new_tool": str(tool_path)},
|
243 |
force_finish=True,
|
244 |
enable_checker=False,
|
245 |
step_rag_num=4,
|
|
|
248 |
)
|
249 |
agent.init_model()
|
250 |
|
251 |
+
self._log_system_status("post-init")
|
252 |
+
logger.info("Clinical agent ready")
|
253 |
return agent
|
254 |
+
|
255 |
+
def _log_system_status(self, phase: str) -> None:
|
256 |
+
"""Log system resource utilization"""
|
257 |
+
try:
|
258 |
+
cpu = psutil.cpu_percent(interval=1)
|
259 |
+
mem = psutil.virtual_memory()
|
260 |
+
logger.info(f"[{phase}] CPU: {cpu:.1f}% | RAM: {mem.used//(1024**2)}MB/{mem.total//(1024**2)}MB")
|
261 |
+
|
262 |
+
gpu_info = subprocess.run(
|
263 |
+
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu",
|
264 |
+
"--format=csv,nounits,noheader"],
|
265 |
+
capture_output=True, text=True
|
266 |
+
)
|
267 |
+
if gpu_info.returncode == 0:
|
268 |
+
used, total, util = gpu_info.stdout.strip().split(", ")
|
269 |
+
logger.info(f"[{phase}] GPU: {used}MB/{total}MB | Util: {util}%")
|
270 |
+
except Exception as e:
|
271 |
+
logger.error(f"Resource monitoring failed: {e}")
|
272 |
+
|
273 |
+
def process_stream(self, prompt: str, history: List[Dict]) -> Generator[Dict, None, None]:
|
274 |
+
"""Stream the agent's responses"""
|
|
|
|
|
|
|
|
|
275 |
full_response = ""
|
276 |
for chunk in self.agent.run_gradio_chat(prompt, [], 0.2, 512, 2048, False, []):
|
277 |
if not chunk:
|
278 |
continue
|
279 |
|
280 |
if isinstance(chunk, list):
|
281 |
+
for msg in chunk:
|
282 |
+
if hasattr(msg, 'content') and msg.content:
|
283 |
+
cleaned = self.text_analyzer.clean_output(msg.content)
|
284 |
if cleaned:
|
285 |
full_response += cleaned + " "
|
286 |
+
yield {"role": "assistant", "content": full_response}
|
|
|
|
|
|
|
287 |
elif isinstance(chunk, str) and chunk.strip():
|
288 |
+
cleaned = self.text_analyzer.clean_output(chunk)
|
289 |
if cleaned:
|
290 |
full_response += cleaned + " "
|
291 |
+
yield {"role": "assistant", "content": full_response}
|
292 |
+
|
293 |
+
def analyze_records(self, message: str, history: List[Dict], files: List) -> Generator[Dict[str, Any], None, None]:
|
294 |
+
"""Main analysis workflow"""
|
295 |
+
outputs = {
|
296 |
+
"chatbot": history.copy(),
|
297 |
+
"download_output": None,
|
298 |
+
"final_summary": "",
|
299 |
+
"progress": {"value": "Initializing...", "visible": True}
|
300 |
+
}
|
301 |
+
yield outputs
|
302 |
|
303 |
try:
|
304 |
+
# Add user message
|
305 |
+
history.append({"role": "user", "content": message})
|
306 |
+
outputs["chatbot"] = history
|
307 |
+
yield outputs
|
|
|
|
|
308 |
|
309 |
+
# Process files
|
310 |
extracted = []
|
311 |
+
file_hash = ""
|
312 |
|
313 |
if files:
|
314 |
+
with ThreadPoolExecutor(max_workers=4) as executor:
|
315 |
futures = []
|
316 |
for f in files:
|
317 |
+
file_type = Path(f.name).suffix[1:].lower()
|
318 |
+
futures.append(executor.submit(
|
319 |
+
self.file_processor.handle_upload,
|
320 |
+
f.name,
|
321 |
+
file_type
|
322 |
+
))
|
323 |
|
324 |
for i, future in enumerate(as_completed(futures), 1):
|
325 |
try:
|
326 |
extracted.extend(future.result())
|
327 |
+
outputs["progress"] = self._format_progress(i, len(files), "Processing files")
|
328 |
+
yield outputs
|
329 |
except Exception as e:
|
330 |
+
logger.error(f"File processing failed: {e}")
|
331 |
+
extracted.append({"error": str(e)})
|
332 |
|
333 |
+
if files and os.path.exists(files[0].name):
|
334 |
+
file_hash = hashlib.md5(open(files[0].name, "rb").read()).hexdigest()
|
335 |
+
|
336 |
+
history.append({"role": "assistant", "content": "✅ Files processed successfully"})
|
337 |
+
outputs.update({
|
338 |
+
"chatbot": history,
|
339 |
+
"progress": self._format_progress(len(files), len(files), "Files processed")
|
340 |
})
|
341 |
+
yield outputs
|
|
|
342 |
|
343 |
# Analyze content
|
344 |
text_content = "\n".join(json.dumps(item) for item in extracted)
|
345 |
+
chunks = self.text_analyzer.chunk_content(text_content)
|
346 |
+
full_analysis = ""
|
347 |
|
348 |
+
for idx, chunk in enumerate(chunks, 1):
|
349 |
prompt = f"""
|
350 |
+
Analyze this clinical documentation for potential missed diagnoses. Provide:
|
351 |
+
1. Specific clinical findings with references (e.g., "Elevated BP (160/95) on page 3")
|
352 |
+
2. Their clinical significance
|
353 |
+
3. Urgency of review
|
354 |
+
Use concise, continuous prose without bullet points. If no concerns, state "No missed diagnoses identified."
|
355 |
+
|
356 |
+
Document Excerpt (Part {idx}/{len(chunks)}):
|
357 |
+
{chunk[:1750]}
|
358 |
"""
|
359 |
+
history.append({"role": "assistant", "content": ""})
|
360 |
+
outputs.update({
|
361 |
+
"chatbot": history,
|
362 |
+
"progress": self._format_progress(idx, len(chunks), "Analyzing")
|
363 |
+
})
|
364 |
+
yield outputs
|
365 |
|
366 |
+
# Stream analysis
|
367 |
chunk_response = ""
|
368 |
+
for update in self.process_stream(prompt, history):
|
369 |
+
history[-1] = update
|
370 |
chunk_response = update["content"]
|
371 |
+
outputs.update({
|
372 |
+
"chatbot": history,
|
373 |
+
"progress": self._format_progress(idx, len(chunks), "Analyzing")
|
374 |
+
})
|
375 |
+
yield outputs
|
376 |
|
377 |
+
full_analysis += f"--- Analysis Part {idx} ---\n{chunk_response}\n"
|
378 |
+
torch.cuda.empty_cache()
|
379 |
+
gc.collect()
|
380 |
|
381 |
+
# Final outputs
|
382 |
+
summary = self.text_analyzer.generate_summary(full_analysis)
|
383 |
+
report_path = DIRECTORIES["reports"] / f"{file_hash}_report.txt" if file_hash else None
|
384 |
|
385 |
if report_path:
|
386 |
with open(report_path, "w", encoding="utf-8") as f:
|
387 |
+
f.write(full_analysis + "\n\nSUMMARY:\n" + summary)
|
388 |
|
389 |
+
outputs.update({
|
390 |
+
"download_output": str(report_path) if report_path and report_path.exists() else None,
|
391 |
+
"final_summary": summary,
|
392 |
+
"progress": {"visible": False}
|
393 |
+
})
|
394 |
+
yield outputs
|
395 |
|
396 |
except Exception as e:
|
397 |
+
logger.error(f"Analysis failed: {e}")
|
398 |
+
history.append({"role": "assistant", "content": f"❌ Analysis error: {str(e)}"})
|
399 |
+
outputs.update({
|
400 |
+
"chatbot": history,
|
401 |
+
"final_summary": f"Error: {str(e)}",
|
402 |
+
"progress": {"visible": False}
|
403 |
})
|
404 |
+
yield outputs
|
405 |
+
|
406 |
+
def _format_progress(self, current: int, total: int, stage: str = "") -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
407 |
"""Format progress update for UI"""
|
408 |
+
status = f"{stage} - {current}/{total}" if stage else f"{current}/{total}"
|
409 |
+
return {"value": status, "visible": True, "label": f"Progress: {status}"}
|
410 |
+
|
411 |
+
def create_interface(self) -> gr.Blocks:
|
412 |
+
"""Build the Gradio interface"""
|
413 |
+
with gr.Blocks(
|
414 |
+
theme=gr.themes.Soft(
|
415 |
+
primary_hue="indigo",
|
416 |
+
secondary_hue="blue",
|
417 |
+
neutral_hue="slate"
|
418 |
+
),
|
419 |
+
title="Clinical Oversight Assistant",
|
420 |
+
css="""
|
421 |
+
.summary-panel {
|
422 |
+
border-left: 4px solid #4f46e5;
|
423 |
+
padding: 16px;
|
424 |
+
background: #f8fafc;
|
425 |
+
border-radius: 8px;
|
426 |
+
margin-bottom: 16px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
}
|
428 |
+
.upload-area {
|
429 |
+
border: 2px dashed #cbd5e1;
|
430 |
+
border-radius: 8px;
|
431 |
+
padding: 24px;
|
432 |
+
margin: 12px 0;
|
433 |
}
|
|
|
|
|
|
|
434 |
.chat-container {
|
435 |
+
border-radius: 8px;
|
436 |
+
border: 1px solid #e2e8f0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
}
|
438 |
+
"""
|
439 |
+
) as app:
|
440 |
+
# Header
|
441 |
+
gr.Markdown("""
|
442 |
+
<div style='text-align: center; margin-bottom: 24px;'>
|
443 |
+
<h1 style='color: #4f46e5; margin-bottom: 8px;'>🩺 Clinical Oversight Assistant</h1>
|
444 |
+
<p style='color: #64748b;'>
|
445 |
+
AI-powered analysis for identifying potential missed diagnoses in patient records
|
446 |
+
</p>
|
447 |
+
</div>
|
448 |
+
""")
|
449 |
+
|
450 |
+
with gr.Row(equal_height=False):
|
451 |
+
# Main Chat Panel
|
452 |
+
with gr.Column(scale=3):
|
453 |
+
gr.Markdown("**Clinical Analysis Conversation**")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
chatbot = gr.Chatbot(
|
455 |
+
label="",
|
456 |
+
height=650,
|
457 |
show_copy_button=True,
|
458 |
+
avatar_images=(
|
459 |
+
"assets/user.png",
|
460 |
+
"assets/assistant.png"
|
461 |
+
) if Path("assets/user.png").exists() else None,
|
462 |
+
bubble_full_width=False,
|
463 |
type="messages",
|
464 |
+
elem_classes=["chat-container"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
|
467 |
+
# Results Panel
|
468 |
+
with gr.Column(scale=1):
|
469 |
+
with gr.Group():
|
470 |
+
gr.Markdown("**Clinical Summary**")
|
471 |
+
final_summary = gr.Markdown(
|
472 |
+
"Analysis results will appear here...",
|
473 |
+
elem_classes=["summary-panel"]
|
474 |
+
)
|
475 |
+
|
476 |
+
with gr.Group():
|
477 |
+
gr.Markdown("**Report Export**")
|
478 |
+
download_output = gr.File(
|
479 |
+
label="Download Full Analysis",
|
480 |
+
visible=False,
|
481 |
+
interactive=False
|
482 |
+
)
|
483 |
+
|
484 |
+
# Input Section
|
485 |
+
with gr.Row():
|
486 |
+
file_upload = gr.File(
|
487 |
+
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
|
488 |
+
file_count="multiple",
|
489 |
+
label="Upload Patient Records",
|
490 |
+
elem_classes=["upload-area"]
|
491 |
)
|
492 |
|
493 |
+
with gr.Row():
|
494 |
+
user_input = gr.Textbox(
|
495 |
+
placeholder="Enter your clinical query or analysis request...",
|
496 |
+
show_label=False,
|
497 |
+
container=False,
|
498 |
+
scale=7,
|
499 |
+
autofocus=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
)
|
501 |
+
submit_btn = gr.Button(
|
502 |
+
"Analyze",
|
503 |
+
variant="primary",
|
504 |
+
scale=1,
|
505 |
+
min_width=120
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
506 |
)
|
507 |
|
508 |
+
# Hidden progress tracker
|
509 |
+
progress_tracker = gr.Textbox(
|
510 |
+
label="Analysis Progress",
|
511 |
+
visible=False,
|
512 |
+
interactive=False
|
513 |
+
)
|
514 |
+
|
515 |
+
# Event handlers
|
516 |
+
submit_btn.click(
|
517 |
+
self.analyze_records,
|
518 |
+
inputs=[user_input, chatbot, file_upload],
|
519 |
+
outputs=[chatbot, download_output, final_summary, progress_tracker],
|
520 |
+
show_progress="hidden"
|
521 |
+
)
|
522 |
+
|
523 |
+
user_input.submit(
|
524 |
+
self.analyze_records,
|
525 |
+
inputs=[user_input, chatbot, file_upload],
|
526 |
+
outputs=[chatbot, download_output, final_summary, progress_tracker],
|
527 |
+
show_progress="hidden"
|
528 |
+
)
|
529 |
+
|
530 |
+
app.load(
|
531 |
+
lambda: [[], None, "", "", None, {"visible": False}],
|
532 |
+
outputs=[chatbot, download_output, final_summary, user_input, file_upload, progress_tracker],
|
533 |
+
queue=False
|
534 |
+
)
|
535 |
+
|
536 |
+
return app
|
537 |
|
538 |
# ==================== APPLICATION ENTRY POINT ====================
|
539 |
if __name__ == "__main__":
|
|
|
540 |
try:
|
541 |
+
logger.info("Launching Clinical Oversight Assistant...")
|
542 |
+
clinical_app = ClinicalAgent()
|
543 |
+
interface = clinical_app.create_interface()
|
544 |
|
545 |
interface.queue(
|
546 |
api_open=False,
|
|
|
549 |
server_name="0.0.0.0",
|
550 |
server_port=7860,
|
551 |
show_error=True,
|
552 |
+
allowed_paths=[str(DIRECTORIES["reports"])],
|
553 |
share=False
|
554 |
)
|
555 |
except Exception as e:
|
556 |
logger.error(f"Application failed to start: {e}")
|
557 |
raise
|
558 |
finally:
|
559 |
+
if torch.distributed.is_initialized():
|
560 |
+
torch.distributed.destroy_process_group()
|