File size: 16,668 Bytes
463c8b4
a6968c2
c9b3ae0
463c8b4
973658c
463c8b4
 
a6968c2
463c8b4
 
 
 
0456412
 
 
 
c278ebf
6741b3e
 
 
 
 
90e24e0
6741b3e
0456412
6741b3e
0456412
 
463c8b4
c9b3ae0
a6968c2
463c8b4
 
 
a6968c2
 
463c8b4
 
 
a6968c2
 
463c8b4
eea533f
463c8b4
 
 
 
 
 
 
 
 
 
0456412
 
 
a6968c2
41eb6bd
a6968c2
 
41eb6bd
 
a6968c2
6741b3e
cbd84d4
6741b3e
 
 
 
0456412
6741b3e
0456412
 
 
 
 
cbd84d4
6741b3e
 
 
 
 
 
 
 
0456412
 
6741b3e
 
 
 
 
0456412
6741b3e
0456412
c278ebf
0456412
 
6741b3e
 
 
 
463c8b4
0456412
463c8b4
90e24e0
463c8b4
a6968c2
0456412
 
 
6741b3e
0456412
c9b3ae0
41eb6bd
6741b3e
 
 
 
 
463c8b4
c9b3ae0
 
463c8b4
 
 
c9b3ae0
a8cd932
 
 
 
463c8b4
 
41eb6bd
463c8b4
0456412
 
6741b3e
463c8b4
 
0456412
463c8b4
 
 
 
 
 
0456412
463c8b4
 
 
 
 
 
0456412
463c8b4
0456412
3683afe
463c8b4
 
6741b3e
 
51aebc3
3800ddf
6741b3e
3800ddf
 
 
eea533f
51aebc3
 
6741b3e
51aebc3
6741b3e
9277e15
6741b3e
 
 
 
463c8b4
9277e15
 
 
 
 
6741b3e
9277e15
 
 
 
 
 
6741b3e
9277e15
6741b3e
 
 
 
 
 
 
 
 
9277e15
463c8b4
0456412
463c8b4
 
 
 
 
 
 
 
 
 
 
9277e15
6741b3e
 
 
463c8b4
 
 
a8cd932
 
0456412
463c8b4
 
67dd49b
 
 
9277e15
 
67dd49b
 
 
 
0456412
67dd49b
0456412
9277e15
0456412
 
 
 
 
6741b3e
a8cd932
9277e15
463c8b4
 
 
 
 
0456412
9277e15
463c8b4
6741b3e
 
 
 
463c8b4
0456412
9277e15
6741b3e
463c8b4
6741b3e
463c8b4
6741b3e
eea533f
0456412
c0b6a0b
a8cd932
0456412
 
6741b3e
0456412
 
 
 
6741b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0456412
 
 
 
 
 
6741b3e
 
0456412
eea533f
 
 
 
 
9277e15
463c8b4
eea533f
463c8b4
9277e15
 
463c8b4
 
0456412
463c8b4
9277e15
41eb6bd
9277e15
 
a6968c2
fe67870
e24be23
0456412
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
import asyncio
import pypdfium2 as pdfium
import pytesseract
from PIL import Image
import io

# Configure logging and suppress warnings
logging.basicConfig(level=logging.INFO)
logging.getLogger("pdfminer").setLevel(logging.ERROR)
logger = logging.getLogger(__name__)

# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

async def extract_all_pages_async(file_path: str, progress_callback=None, use_ocr=False) -> str:
    try:
        pdf = pdfium.PdfDocument(file_path)
        total_pages = len(pdf)
        if total_pages == 0:
            return ""

        batch_size = 5
        batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
        text_chunks = [""] * total_pages
        processed_pages = 0

        def extract_batch(start: int, end: int) -> List[tuple]:
            results = []
            for i in range(start, end):
                page = pdf[i]
                text = page.get_textpage().get_text_range() or ""
                if not text.strip() and use_ocr:
                    # Fallback to OCR
                    bitmap = page.render(scale=2).to_pil()
                    text = pytesseract.image_to_string(bitmap, lang="eng")
                results.append((i, f"=== Page {i + 1} ===\n{text.strip()}"))
            return results

        loop = asyncio.get_event_loop()
        with ThreadPoolExecutor(max_workers=4) as executor:
            futures = [loop.run_in_executor(executor, extract_batch, start, end) for start, end in batches]
            for future in await asyncio.gather(*futures):
                for page_num, text in future:
                    text_chunks[page_num] = text
                    logger.debug("Page %d extracted: %s...", page_num + 1, text[:50])
                processed_pages += batch_size
                if progress_callback:
                    progress_callback(min(processed_pages, total_pages), total_pages)

        pdf.close()
        extracted_text = "\n\n".join(filter(None, text_chunks))
        logger.info("Extracted %d pages, total length: %d chars", total_pages, len(extracted_text))
        return extracted_text
    except Exception as e:
        logger.error("PDF processing error: %s", e)
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str:
    try:
        file_h = file_hash(file_path)
        cache_key = f"{file_h}_{file_type}"
        if cache_key in cache:
            logger.info("Using cached extraction for %s", file_path)
            return cache[cache_key]

        if file_type == "pdf":
            # Try without OCR first, fallback to OCR if empty
            text = asyncio.run(extract_all_pages_async(file_path, progress_callback, use_ocr=False))
            if not text.strip() or "PDF processing error" in text:
                logger.info("Retrying extraction with OCR for %s", file_path)
                text = asyncio.run(extract_all_pages_async(file_path, progress_callback, use_ocr=True))
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
                             skip_blank_lines=False, on_bad_lines="skip")
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except Exception:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})

        cache[cache_key] = result
        logger.info("Cached extraction for %s, size: %d bytes", file_path, len(result))
        return result
    except Exception as e:
        logger.error("Error processing %s: %s", os.path.basename(file_path), e)
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def log_system_usage(tag=""):
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2))
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util)
    except Exception as e:
        logger.error("[%s] GPU/CPU monitor failed: %s", tag, e)

def clean_response(text: str) -> str:
    text = sanitize_utf8(text)
    text = text.replace("[", "").replace("]", "").replace("None", "")  # Faster string ops
    text = text.replace("\n\n\n", "\n\n")
    sections = {}
    current_section = None
    for line in text.splitlines():
        line = line.strip()
        if not line:
            continue
        section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
        if section_match:
            current_section = section_match.group(1)
            sections.setdefault(current_section, [])
            continue
        if current_section and line.startswith("- ") and "No issues identified" not in line:
            sections[current_section].append(line)
    cleaned = [f"### {heading}\n" + "\n".join(findings) for heading, findings in sections.items() if findings]
    result = "\n\n".join(cleaned).strip()
    logger.debug("Cleaned response length: %d chars", len(result))
    return result or ""

def summarize_findings(combined_response: str) -> str:
    if not combined_response or all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
        return "### Summary of Clinical Oversights\nNo critical oversights identified in the provided records."
    sections = {}
    current_section = None
    for line in combined_response.splitlines():
        line = line.strip()
        if not line:
            continue
        section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
        if section_match:
            current_section = section_match.group(1)
            sections.setdefault(current_section, [])
            continue
        if current_section and line.startswith("- "):
            sections[current_section].append(line[2:])
    summary_lines = [
        f"- **{heading}**: {'; '.join(findings[:1])}. Risks: potential adverse outcomes. Recommend: urgent review."
        for heading, findings in sections.items() if findings
    ]
    result = "### Summary of Clinical Oversights\n" + "\n".join(summary_lines) if summary_lines else "### Summary of Clinical Oversights\nNo critical oversights identified."
    logger.debug("Summary length: %d chars", len(result))
    return result

def init_agent():
    logger.info("Initializing model...")
    log_system_usage("Before Load")
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=False,
        enable_rag=False,
        init_rag_num=0,
        step_rag_num=0,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    log_system_usage("After Load")
    logger.info("Agent Ready")
    return agent

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages")
        final_summary = gr.Markdown(label="Summary of Clinical Oversights")
        file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        download_output = gr.File(label="Download Full Report")
        progress_bar = gr.Progress()

        prompt_template = """
Analyze the patient record excerpt for clinical oversights. Provide a concise, evidence-based summary in markdown with findings grouped under headings (e.g., 'Missed Diagnoses'). For each finding, include clinical context, risks, and recommendations. Output only markdown bullet points under headings. If no issues, state "No issues identified".

Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
"""

        async def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
            history.append({"role": "user", "content": message})
            yield history, None, ""

            extracted = ""
            file_hash_value = ""
            if files:
                def update_extraction_progress(current, total):
                    progress(current / total, desc=f"Extracting text... Page {current}/{total}")
                    return history, None, ""

                futures = [convert_file_to_json(f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files]
                results = [sanitize_utf8(future) for future in futures]
                extracted = "\n".join(results)
                file_hash_value = file_hash(files[0].name) if files else ""

                history.append({"role": "assistant", "content": "✅ Text extraction complete."})
                yield history, None, ""
                logger.info("Extracted text length: %d chars", len(extracted))

            chunk_size = 4000  # Increased slightly
            chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
            logger.info("Created %d chunks", len(chunks))
            combined_response = ""
            batch_size = 2

            try:
                for batch_idx in range(0, len(chunks), batch_size):
                    batch_chunks = chunks[batch_idx:batch_idx + batch_size]
                    batch_prompts = [prompt_template.format(i + 1, len(chunks), chunk=chunk[:2000]) for i, chunk in enumerate(batch_chunks)]
                    batch_responses = []

                    progress((batch_idx + 1) / len(chunks), desc=f"Analyzing chunks {batch_idx + 1}-{min(batch_idx + batch_size, len(chunks))}/{len(chunks)}")

                    async def process_chunk(prompt):
                        chunk_response = ""
                        for chunk_output in agent.run_gradio_chat(
                            message=prompt, history=[], temperature=0.2, max_new_tokens=128, max_token=768, call_agent=False, conversation=[]
                        ):
                            if chunk_output is None:
                                continue
                            if isinstance(chunk_output, list):
                                for m in chunk_output:
                                    if hasattr(m, 'content') and m.content:
                                        cleaned = clean_response(m.content)
                                        if cleaned and re.search(r"###\s*\w+", cleaned):
                                            chunk_response += cleaned + "\n\n"
                            elif isinstance(chunk_output, str) and chunk_output.strip():
                                cleaned = clean_response(chunk_output)
                                if cleaned and re.search(r"###\s*\w+", cleaned):
                                    chunk_response += cleaned + "\n\n"
                        logger.debug("Chunk response length: %d chars", len(chunk_response))
                        return chunk_response

                    futures = [process_chunk(prompt) for prompt in batch_prompts]
                    batch_responses = await asyncio.gather(*futures)
                    torch.cuda.empty_cache()
                    gc.collect()

                    for chunk_idx, chunk_response in enumerate(batch_responses, batch_idx + 1):
                        if chunk_response:
                            combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
                        else:
                            combined_response += f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n"
                    history[-1] = {"role": "assistant", "content": combined_response.strip()}
                    yield history, None, ""

                if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
                    history[-1]["content"] = combined_response.strip()
                else:
                    history.append({"role": "assistant", "content": "No oversights identified in the provided records."})

                summary = summarize_findings(combined_response)
                report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
                if report_path:
                    with open(report_path, "w", encoding="utf-8") as f:
                        f.write(combined_response + "\n\n" + summary)
                yield history, report_path if report_path and os.path.exists(report_path) else None, summary

            except Exception as e:
                logger.error("Analysis error: %s", e)
                history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
                yield history, None, f"### Summary of Clinical Oversights\nError occurred during analysis: {str(e)}"

        send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
        msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
    return demo

if __name__ == "__main__":
    try:
        logger.info("Launching app...")
        agent = init_agent()
        demo = create_ui(agent)
        demo.queue(api_open=False).launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False
        )
    finally:
        if torch.distributed.is_initialized():
            torch.distributed.destroy_process_group()