File size: 11,454 Bytes
b4fa34c
34a564f
973658c
 
 
 
 
 
 
 
 
 
 
 
 
eab55d6
bdb999a
d13831a
 
 
 
 
973658c
 
3cdcbc4
b4fa34c
3cdcbc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abc4511
 
 
 
9ef8abc
c441954
ac93cad
 
abc4511
 
 
dae38a2
7323cb6
 
 
 
abc4511
1da2cfd
abc4511
1da2cfd
abc4511
6af3907
 
abc4511
 
34a564f
abc4511
 
1da2cfd
b4fa34c
eab55d6
b4fa34c
e24be23
abc4511
dae38a2
abc4511
 
7323cb6
6af3907
 
abc4511
1da2cfd
abc4511
 
1da2cfd
b4fa34c
abc4511
 
dae38a2
abc4511
 
 
 
 
 
dae38a2
6af3907
b4fa34c
abc4511
7323cb6
dae38a2
7323cb6
b4fa34c
eab55d6
b4fa34c
abc4511
9ec5ec4
7323cb6
665f0eb
9ec5ec4
f4976e2
9ec5ec4
 
665f0eb
9ec5ec4
 
665f0eb
f4976e2
5f7a1a1
f4976e2
eab55d6
6af3907
abc4511
eab55d6
b4fa34c
eab55d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
853633a
f4976e2
 
 
 
 
 
 
 
 
 
eab55d6
 
 
 
 
 
 
 
 
34a564f
eab55d6
 
 
b4fa34c
 
eab55d6
 
 
b4fa34c
 
eab55d6
 
abc4511
 
 
 
 
 
b4fa34c
abc4511
 
 
b4fa34c
 
fd2b3df
853633a
ac11a7e
b4fa34c
ac11a7e
34a564f
 
 
 
 
 
 
 
 
b4fa34c
 
 
 
34a564f
b4fa34c
 
eab55d6
b4fa34c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eab55d6
853633a
8126e99
853633a
b4fa34c
 
 
 
ac11a7e
 
 
 
6cafd98
 
 
b4fa34c
eab55d6
6cafd98
6af3907
f4976e2
 
abc4511
e24be23
 
eab55d6
 
 
 
 
 
 
 
 
 
 
 
 
ac11a7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# Full updated app.py with TOOL_CALLS displayed separately and full fixes

import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import traceback
import torch

os.environ["VLLM_LOGGING_LEVEL"] = "DEBUG"
if not torch.cuda.is_available():
    print("No GPU detected. Forcing CPU mode by setting CUDA_VISIBLE_DEVICES to an empty string.")
    os.environ["CUDA_VISIBLE_DEVICES"] = ""

persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
                    'allergies', 'summary', 'impression', 'findings', 'recommendations'}

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
    try:
        text_chunks = []
        with pdfplumber.open(file_path) as pdf:
            for i, page in enumerate(pdf.pages[:3]):
                text = page.extract_text() or ""
                text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
            for i, page in enumerate(pdf.pages[3:max_pages], start=4):
                page_text = page.extract_text() or ""
                if any(re.search(rf'\\b{kw}\\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
                    text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
        return "\n\n".join(text_chunks)
    except Exception as e:
        print("PDF processing error:", str(e))
        traceback.print_exc()
        return str(e)

def convert_file_to_json(file_path: str, file_type: str) -> str:
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        if os.path.exists(cache_path):
            with open(cache_path, "r", encoding="utf-8") as f:
                return f.read()

        if file_type == "pdf":
            text = extract_priority_pages(file_path)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip")
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except Exception:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})

        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result
    except Exception as e:
        print("Error processing", file_path, str(e))
        traceback.print_exc()
        return json.dumps({"error": str(e)})

def log_system_usage(tag=""):
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
    except Exception as e:
        print(f"[{tag}] GPU/CPU monitor failed: {e}")
        traceback.print_exc()

def init_agent():
    try:
        print("πŸ” Initializing model...")
        log_system_usage("Before Load")
        default_tool_path = os.path.abspath("data/new_tool.json")
        target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
        if not os.path.exists(target_tool_path):
            shutil.copy(default_tool_path, target_tool_path)

        agent = TxAgent(
            model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
            rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
            tool_files_dict={"new_tool": target_tool_path},
            force_finish=True,
            enable_checker=True,
            step_rag_num=8,
            seed=100,
            additional_default_tools=[],
        )
        agent.init_model()
        log_system_usage("After Load")
        print("βœ… Agent Ready")
        return agent
    except Exception as e:
        print("❌ Error initializing agent:", str(e))
        traceback.print_exc()
        raise e

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
        file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        download_output = gr.File(label="Download Full Report")

        def analyze(message: str, history: list, files: list):
            try:
                history.append({"role": "user", "content": message})
                history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
                yield history, None

                extracted = ""
                file_hash_value = ""
                if files:
                    with ThreadPoolExecutor(max_workers=4) as executor:
                        futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
                        results = []
                        for future in as_completed(futures):
                            try:
                                res = future.result()
                                results.append(sanitize_utf8(res))
                            except Exception as e:
                                print("❌ Error in file processing:", str(e))
                                traceback.print_exc()
                    extracted = "\n".join(results)
                    file_hash_value = file_hash(files[0].name)

                prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up

Medical Records:
{extracted[:8000]}

### Potential Oversights:
"""
                print("πŸ”Ž Generated prompt:")
                print(prompt)

                full_response = ""
                response_chunks = []
                tool_calls_rendered = []

                for chunk in agent.run_gradio_chat(
                    message=prompt,
                    history=[],
                    temperature=0.2,
                    max_new_tokens=2048,
                    max_token=4096,
                    call_agent=False,
                    conversation=[]
                ):
                    if chunk is None:
                        continue
                    chunk_content = chunk if isinstance(chunk, str) else getattr(chunk, 'content', '')
                    if not chunk_content:
                        continue
                    response_chunks.append(chunk_content)
                    full_response = "".join(response_chunks)

                    matches = re.findall(r"\[TOOL_CALLS\]\[(.*?)\]", chunk_content, re.DOTALL)
                    for m in matches:
                        tool_calls_rendered.append(f"\nπŸ“¦ Tool Call: [{m.strip()}]")

                    display_response = re.sub(r"\[TOOL_CALLS\].*?\n*", "", full_response, flags=re.DOTALL)
                    display_response = display_response.replace('[TxAgent]', '').strip()
                    display_response += "\n\n" + "\n".join(tool_calls_rendered)

                    if history and history[-1]["role"] == "assistant":
                        history[-1]["content"] = display_response
                    else:
                        history.append({"role": "assistant", "content": display_response})

                    yield history, None

                full_response = re.sub(r"\[TOOL_CALLS\].*?\n*", "", full_response, flags=re.DOTALL).strip()
                full_response = full_response.replace('[TxAgent]', '').strip()

                report_path = None
                if file_hash_value:
                    report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
                    with open(report_path, "w", encoding="utf-8") as f:
                        f.write(full_response)

                if history and history[-1]["role"] == "assistant":
                    history[-1]["content"] = full_response
                else:
                    history.append({"role": "assistant", "content": full_response})

                yield history, report_path if report_path and os.path.exists(report_path) else None

            except Exception as e:
                history.append({"role": "assistant", "content": f"❌ An error occurred in analyze: {str(e)}"})
                traceback.print_exc()
                yield history, None

        send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
        msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
    return demo

if __name__ == "__main__":
    try:
        print("πŸš€ Launching app...")
        agent = init_agent()
        demo = create_ui(agent)
        demo.queue(api_open=False).launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False
        )
    except Exception as e:
        print("❌ Fatal error during launch:", str(e))
        traceback.print_exc()