File size: 12,688 Bytes
973658c
 
 
 
 
 
 
 
 
 
 
 
 
eab55d6
d13831a
 
 
 
 
 
 
 
 
973658c
8126e99
973658c
3cdcbc4
 
 
 
 
 
 
 
 
 
 
d13831a
3cdcbc4
 
 
 
 
 
abc4511
 
 
 
9ef8abc
c441954
d13831a
ac93cad
 
abc4511
 
 
dae38a2
7323cb6
 
 
 
abc4511
1da2cfd
abc4511
1da2cfd
abc4511
6af3907
 
abc4511
 
853633a
abc4511
 
1da2cfd
eab55d6
 
 
 
e24be23
abc4511
dae38a2
abc4511
 
7323cb6
6af3907
 
abc4511
1da2cfd
abc4511
 
1da2cfd
ac93cad
6af3907
abc4511
 
dae38a2
abc4511
 
 
 
 
 
dae38a2
6af3907
abc4511
7323cb6
dae38a2
7323cb6
eab55d6
 
 
 
abc4511
9ec5ec4
7323cb6
665f0eb
9ec5ec4
f4976e2
9ec5ec4
 
665f0eb
9ec5ec4
 
665f0eb
f4976e2
5f7a1a1
f4976e2
eab55d6
6af3907
abc4511
eab55d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
853633a
f4976e2
 
 
 
 
 
 
 
 
 
eab55d6
ac11a7e
eab55d6
 
 
 
ac11a7e
eab55d6
 
 
 
d13831a
 
 
 
eab55d6
 
 
 
 
 
 
 
 
 
 
 
abc4511
 
 
 
 
 
665f0eb
abc4511
 
 
fd2b3df
eab55d6
 
 
ac11a7e
853633a
ac11a7e
 
 
 
f4976e2
 
 
 
6cafd98
f4976e2
 
fd2b3df
f4976e2
eab55d6
 
 
ac11a7e
 
eab55d6
ac11a7e
eab55d6
 
 
 
ac11a7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eab55d6
 
 
ac11a7e
eab55d6
ac11a7e
eab55d6
 
 
ac11a7e
853633a
8126e99
853633a
eab55d6
 
 
 
 
 
853633a
ac11a7e
 
 
 
 
 
6cafd98
 
 
eab55d6
 
 
ac11a7e
6cafd98
6af3907
f4976e2
 
abc4511
e24be23
 
eab55d6
 
 
 
 
 
 
 
 
 
 
 
 
ac11a7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import traceback
import torch  # For checking CUDA availability

# Set VLLM logging level to DEBUG for detailed output
os.environ["VLLM_LOGGING_LEVEL"] = "DEBUG"

# If no GPU is available, force CPU usage by hiding CUDA devices
if not torch.cuda.is_available():
    print("No GPU detected. Forcing CPU mode by setting CUDA_VISIBLE_DEVICES to an empty string.")
    os.environ["CUDA_VISIBLE_DEVICES"] = ""

# Persistent directory setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

# Update environment variables to use HF_HOME
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Medical keywords for processing PDF files
MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
                    'allergies', 'summary', 'impression', 'findings', 'recommendations'}

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
    try:
        text_chunks = []
        with pdfplumber.open(file_path) as pdf:
            for i, page in enumerate(pdf.pages[:3]):
                text = page.extract_text() or ""
                text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
            for i, page in enumerate(pdf.pages[3:max_pages], start=4):
                page_text = page.extract_text() or ""
                if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
                    text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
        return "\n\n".join(text_chunks)
    except Exception as e:
        debug_msg = f"PDF processing error: {str(e)}"
        print(debug_msg)
        traceback.print_exc()
        return debug_msg

def convert_file_to_json(file_path: str, file_type: str) -> str:
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        if os.path.exists(cache_path):
            with open(cache_path, "r", encoding="utf-8") as f:
                return f.read()

        if file_type == "pdf":
            text = extract_priority_pages(file_path)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
                             skip_blank_lines=False, on_bad_lines="skip")
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except Exception:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result
    except Exception as e:
        error_msg = f"Error processing {os.path.basename(file_path)}: {str(e)}"
        print(error_msg)
        traceback.print_exc()
        return json.dumps({"error": error_msg})

def log_system_usage(tag=""):
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
    except Exception as e:
        print(f"[{tag}] GPU/CPU monitor failed: {e}")
        traceback.print_exc()

def init_agent():
    try:
        print("πŸ” Initializing model...")
        log_system_usage("Before Load")
        default_tool_path = os.path.abspath("data/new_tool.json")
        target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
        if not os.path.exists(target_tool_path):
            shutil.copy(default_tool_path, target_tool_path)

        agent = TxAgent(
            model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
            rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
            tool_files_dict={"new_tool": target_tool_path},
            force_finish=True,
            enable_checker=True,
            step_rag_num=8,
            seed=100,
            additional_default_tools=[],
        )
        agent.init_model()
        log_system_usage("After Load")
        print("βœ… Agent Ready")
        return agent
    except Exception as e:
        print("❌ Error initializing agent:", str(e))
        traceback.print_exc()
        raise e

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
        file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        download_output = gr.File(label="Download Full Report")

        def analyze(message: str, history: list, files: list):
            try:
                # Initialize response with loading message
                history.append({"role": "user", "content": message})
                history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
                yield history, None

                # Process files in parallel
                extracted = ""
                file_hash_value = ""
                if files:
                    with ThreadPoolExecutor(max_workers=4) as executor:
                        futures = [
                            executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower())
                            for f in files
                        ]
                        results = []
                        for future in as_completed(futures):
                            try:
                                res = future.result()
                                results.append(sanitize_utf8(res))
                            except Exception as e:
                                print("❌ Error in file processing:", str(e))
                                traceback.print_exc()
                        extracted = "\n".join(results)
                        file_hash_value = file_hash(files[0].name)

                prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up

Medical Records:
{extracted[:12000]}

### Potential Oversights:
"""

                print("πŸ”Ž Generated prompt:")
                print(prompt)

                # Initialize response tracking
                full_response = ""
                last_update_time = 0
                response_chunks = []

                # Process streaming response
                for chunk in agent.run_gradio_chat(
                    message=prompt,
                    history=[],
                    temperature=0.2,
                    max_new_tokens=2048,
                    max_token=4096,
                    call_agent=False,
                    conversation=[]
                ):
                    try:
                        if chunk is None:
                            continue
                            
                        # Handle different chunk types
                        if isinstance(chunk, str):
                            chunk_content = chunk
                        elif isinstance(chunk, list):
                            chunk_content = "".join([c.content for c in chunk if hasattr(c, "content") and c.content])
                        else:
                            print("DEBUG: Received unknown type chunk", type(chunk))
                            continue

                        if not chunk_content:
                            continue

                        response_chunks.append(chunk_content)
                        full_response = "".join(response_chunks)

                        # Update the chat history with the latest response
                        if len(history) > 0 and history[-1]["role"] == "assistant":
                            history[-1]["content"] = full_response
                        else:
                            history.append({"role": "assistant", "content": full_response})

                        yield history, None

                    except Exception as e:
                        print("❌ Error processing chunk:", str(e))
                        traceback.print_exc()
                        continue

                # Final response handling
                if not full_response:
                    full_response = "⚠️ No clear oversights identified or model output was invalid."

                # Save report if we have files
                report_path = None
                if file_hash_value:
                    report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
                    try:
                        with open(report_path, "w", encoding="utf-8") as f:
                            f.write(full_response)
                    except Exception as e:
                        print("❌ Error saving report:", str(e))
                        traceback.print_exc()

                # Ensure the final response is in the history
                if len(history) > 0 and history[-1]["role"] == "assistant":
                    history[-1]["content"] = full_response
                else:
                    history.append({"role": "assistant", "content": full_response})

                yield history, report_path if report_path and os.path.exists(report_path) else None

            except Exception as e:
                error_message = f"❌ An error occurred in analyze: {str(e)}"
                print(error_message)
                traceback.print_exc()
                history.append({"role": "assistant", "content": error_message})
                yield history, None

        send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
        msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
    return demo

if __name__ == "__main__":
    try:
        print("πŸš€ Launching app...")
        agent = init_agent()
        demo = create_ui(agent)
        demo.queue(api_open=False).launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False
        )
    except Exception as e:
        print("❌ Fatal error during launch:", str(e))
        traceback.print_exc()