File size: 10,529 Bytes
973658c
 
 
 
 
 
 
 
 
 
 
 
 
 
8126e99
973658c
3cdcbc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abc4511
 
 
 
9ef8abc
c441954
ac93cad
 
abc4511
 
 
dae38a2
7323cb6
 
 
 
abc4511
1da2cfd
abc4511
1da2cfd
abc4511
6af3907
 
abc4511
 
853633a
abc4511
 
1da2cfd
abc4511
e24be23
abc4511
dae38a2
abc4511
 
7323cb6
6af3907
 
abc4511
1da2cfd
abc4511
 
1da2cfd
ac93cad
6af3907
abc4511
 
dae38a2
abc4511
 
 
 
 
 
dae38a2
6af3907
abc4511
7323cb6
dae38a2
7323cb6
abc4511
 
9ec5ec4
7323cb6
665f0eb
9ec5ec4
f4976e2
9ec5ec4
 
665f0eb
9ec5ec4
 
665f0eb
f4976e2
5f7a1a1
f4976e2
6af3907
abc4511
f4976e2
665f0eb
abc4511
 
 
 
9ec5ec4
 
abc4511
 
 
 
 
 
 
 
9ef8abc
9ec5ec4
665f0eb
f4976e2
9ec5ec4
abc4511
853633a
8126e99
 
 
 
 
 
 
853633a
8126e99
 
 
 
 
853633a
 
8126e99
 
853633a
8126e99
853633a
f4976e2
 
 
 
 
 
 
 
 
 
fd2b3df
 
ae5e718
6af3907
f4976e2
 
 
 
 
 
 
 
 
 
abc4511
 
 
 
 
 
665f0eb
abc4511
 
 
fd2b3df
6af3907
853633a
 
 
f4976e2
 
 
 
6cafd98
f4976e2
 
fd2b3df
f4976e2
5226240
 
853633a
f4976e2
853633a
f4976e2
853633a
 
 
 
 
 
8126e99
 
 
853633a
 
8126e99
853633a
 
 
 
 
8126e99
853633a
8126e99
853633a
 
 
 
 
6cafd98
 
 
5226240
fd2b3df
6cafd98
6af3907
f4976e2
 
abc4511
e24be23
 
f4976e2
 
 
 
 
 
 
 
 
20d61bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess

# Persistent directory setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
                    'allergies', 'summary', 'impression', 'findings', 'recommendations'}

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
    try:
        text_chunks = []
        with pdfplumber.open(file_path) as pdf:
            for i, page in enumerate(pdf.pages[:3]):
                text = page.extract_text() or ""
                text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
            for i, page in enumerate(pdf.pages[3:max_pages], start=4):
                page_text = page.extract_text() or ""
                if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
                    text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
        return "\n\n".join(text_chunks)
    except Exception as e:
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str) -> str:
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        if os.path.exists(cache_path):
            with open(cache_path, "r", encoding="utf-8") as f:
                return f.read()

        if file_type == "pdf":
            text = extract_priority_pages(file_path)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
                             skip_blank_lines=False, on_bad_lines="skip")
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except Exception:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result
    except Exception as e:
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def log_system_usage(tag=""):
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
    except Exception as e:
        print(f"[{tag}] GPU/CPU monitor failed: {e}")

def init_agent():
    print("🔁 Initializing model...")
    log_system_usage("Before Load")
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=8,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    log_system_usage("After Load")
    print("✅ Agent Ready")
    return agent

def clean_response(response: str) -> str:
    """Enhanced response cleaner that handles duplicates and tool calls."""
    # First extract the main analysis content
    analysis_match = re.search(
        r'(Based on the medical records provided.*?)(?=\[TOOL_CALLS\]|Based on|$)',
        response,
        flags=re.DOTALL
    )
    
    if analysis_match:
        cleaned = analysis_match.group(1).strip()
    else:
        # Fallback if pattern not found
        cleaned = re.sub(r'\[TOOL_CALLS\].*?$', '', response, flags=re.DOTALL).strip()
    
    # Remove any remaining JSON artifacts
    cleaned = re.sub(r'\{.*?\}', '', cleaned)
    cleaned = re.sub(r'\[.*?\]', '', cleaned)
    
    return cleaned

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
        file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        download_output = gr.File(label="Download Full Report")

        def analyze(message: str, history: list, files: list):
            history.append({"role": "user", "content": message})
            history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
            yield history, None

            extracted = ""
            file_hash_value = ""
            if files:
                with ThreadPoolExecutor(max_workers=4) as executor:
                    futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
                    results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
                    extracted = "\n".join(results)
                    file_hash_value = file_hash(files[0].name)

            prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up

Medical Records:
{extracted[:12000]}

### Potential Oversights:
"""

            try:
                full_response = ""
                finish_detected = False
                
                for chunk in agent.run_gradio_chat(
                    message=prompt,
                    history=[],
                    temperature=0.2,
                    max_new_tokens=2048,
                    max_token=4096,
                    call_agent=False,
                    conversation=[]
                ):
                    if chunk is None:
                        continue
                        
                    if isinstance(chunk, str):
                        full_response += chunk
                    elif isinstance(chunk, list):
                        chunk_content = "".join([c.content for c in chunk if hasattr(c, "content") and c.content])
                        full_response += chunk_content
                        if '"name": "Finish"' in chunk_content:
                            finish_detected = True

                    # Display intermediate response
                    current_cleaned = clean_response(full_response)
                    if current_cleaned:
                        history[-1] = {"role": "assistant", "content": current_cleaned}
                        yield history, None

                # Final processing
                final_cleaned = clean_response(full_response)
                
                if not final_cleaned:
                    final_cleaned = "⚠️ No clear oversights identified or model output was invalid."
                
                # Save report
                report_path = None
                if file_hash_value:
                    report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
                    with open(report_path, "w", encoding="utf-8") as f:
                        f.write(final_cleaned)

                history[-1] = {"role": "assistant", "content": final_cleaned}
                yield history, report_path if report_path and os.path.exists(report_path) else None

            except Exception as e:
                print("❌ ERROR:", str(e))
                history[-1] = {"role": "assistant", "content": f"❌ An error occurred: {str(e)}"}
                yield history, None

        send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
        msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
    return demo

if __name__ == "__main__":
    print("🚀 Launching app...")
    agent = init_agent()
    demo = create_ui(agent)
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        allowed_paths=[report_dir],
        share=False
    )