File size: 14,071 Bytes
57bee88
ae5e718
 
d7a5f83
 
9ec5ec4
7323cb6
abc4511
 
9ec5ec4
 
ae5e718
 
 
 
 
 
 
 
 
 
 
 
 
abc4511
ac93cad
c5494f7
3cdcbc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abc4511
 
 
 
9ef8abc
c441954
ac93cad
 
abc4511
 
 
dae38a2
7323cb6
 
 
 
abc4511
1da2cfd
abc4511
1da2cfd
abc4511
6af3907
 
abc4511
 
ac93cad
abc4511
 
1da2cfd
ae5e718
abc4511
e24be23
abc4511
dae38a2
abc4511
 
7323cb6
6af3907
 
abc4511
1da2cfd
abc4511
 
1da2cfd
ac93cad
6af3907
abc4511
 
dae38a2
abc4511
 
 
 
 
 
dae38a2
6af3907
ae5e718
abc4511
7323cb6
dae38a2
7323cb6
ae5e718
abc4511
 
9ec5ec4
7323cb6
665f0eb
9ec5ec4
ae5e718
9ec5ec4
 
665f0eb
9ec5ec4
 
665f0eb
ae5e718
5f7a1a1
ae5e718
6af3907
abc4511
ae5e718
665f0eb
abc4511
 
 
 
9ec5ec4
 
abc4511
 
 
 
 
 
 
 
9ef8abc
9ec5ec4
665f0eb
ae5e718
9ec5ec4
abc4511
ae5e718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6af3907
ae5e718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6af3907
ae5e718
abc4511
 
 
 
 
 
665f0eb
abc4511
 
 
ae5e718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6af3907
ae5e718
 
 
665f0eb
ae5e718
6af3907
ae5e718
 
 
6af3907
ae5e718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6af3907
abc4511
e24be23
 
ae5e718
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
from datetime import datetime

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler(),
        logging.FileHandler('clinical_oversight.log')
    ]
)
logger = logging.getLogger(__name__)

# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
                    'allergies', 'summary', 'impression', 'findings', 'recommendations'}

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
    try:
        text_chunks = []
        with pdfplumber.open(file_path) as pdf:
            for i, page in enumerate(pdf.pages[:3]):
                text = page.extract_text() or ""
                text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
            for i, page in enumerate(pdf.pages[3:max_pages], start=4):
                page_text = page.extract_text() or ""
                if any(re.search(rf'\\b{kw}\\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
                    text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
        return "\n\n".join(text_chunks)
    except Exception as e:
        logger.error(f"Error extracting pages from PDF: {str(e)}")
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str) -> str:
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        if os.path.exists(cache_path):
            with open(cache_path, "r", encoding="utf-8") as f:
                return f.read()

        if file_type == "pdf":
            text = extract_priority_pages(file_path)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
                             skip_blank_lines=False, on_bad_lines="skip")
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except Exception:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})
        
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result
    except Exception as e:
        logger.error(f"Error converting {file_type} file to JSON: {str(e)}")
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def log_system_usage(tag=""):
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        logger.info(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
    except Exception as e:
        logger.error(f"[{tag}] GPU/CPU monitor failed: {e}")

def init_agent():
    logger.info("πŸ” Initializing model...")
    log_system_usage("Before Load")
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=8,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    log_system_usage("After Load")
    logger.info("βœ… Agent Ready")
    return agent

def format_response_for_ui(response: str) -> str:
    """Formats the raw response for clean display in the UI"""
    # Remove any tool call metadata
    cleaned = response.split("[TOOL_CALLS]")[0].strip()
    
    # If we have a structured response, format it nicely
    if "Potential missed diagnoses" in cleaned or "Flagged medication conflicts" in cleaned:
        # Add markdown formatting for better readability
        formatted = []
        for line in cleaned.split("\n"):
            if line.startswith("Potential missed diagnoses"):
                formatted.append(f"### πŸ” Potential Missed Diagnoses")
            elif line.startswith("Flagged medication conflicts"):
                formatted.append(f"\n### ⚠️ Flagged Medication Conflicts")
            elif line.startswith("Incomplete assessments"):
                formatted.append(f"\n### πŸ“‹ Incomplete Assessments")
            elif line.startswith("Highlighted abnormal results"):
                formatted.append(f"\n### ❗ Abnormal Results Needing Follow-up")
            else:
                formatted.append(line)
        return "\n".join(formatted)
    return cleaned

def analyze(message: str, history: list, files: list):
    start_time = datetime.now()
    logger.info(f"Starting analysis for message: {message[:100]}...")
    if files:
        logger.info(f"Processing {len(files)} uploaded files")

    history = history + [{"role": "user", "content": message},
                         {"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}]
    yield history, None

    extracted = ""
    file_hash_value = ""
    if files:
        try:
            with ThreadPoolExecutor(max_workers=4) as executor:
                futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
                results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
                extracted = "\n".join(results)
                file_hash_value = file_hash(files[0].name)
                logger.info(f"Processed {len(files)} files, extracted {len(extracted)} characters")
        except Exception as e:
            logger.error(f"Error processing files: {str(e)}")
            history[-1] = {"role": "assistant", "content": f"❌ Error processing files: {str(e)}"}
            yield history, None
            return

    prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up

Medical Records:
{extracted[:12000]}

### Potential Oversights:
"""
    logger.info(f"Generated prompt with {len(prompt)} characters")

    response_chunks = []
    try:
        logger.info("Starting model inference...")
        for chunk in agent.run_gradio_chat(
            message=prompt,
            history=[],
            temperature=0.2,
            max_new_tokens=1024,
            max_token=4096,
            call_agent=False,
            conversation=[]
        ):
            if not chunk:
                continue
            if isinstance(chunk, str):
                response_chunks.append(chunk)
            elif isinstance(chunk, list):
                response_chunks.extend([c.content for c in chunk if hasattr(c, 'content')])
            
            partial_response = "".join(response_chunks)
            formatted_partial = format_response_for_ui(partial_response)
            
            if formatted_partial:
                history[-1] = {"role": "assistant", "content": formatted_partial}
                yield history, None

        full_response = "".join(response_chunks)
        logger.info(f"Full model response received: {full_response[:500]}...")
        
        final_output = format_response_for_ui(full_response)
        if not final_output or len(final_output) < 20:  # Very short response
            final_output = "No clear oversights identified. Recommend comprehensive review."
            logger.info("No significant findings detected in analysis")
        
        history[-1] = {"role": "assistant", "content": final_output}

        # Save report
        report_path = None
        if file_hash_value:
            report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
            try:
                with open(report_path, "w", encoding="utf-8") as f:
                    f.write(final_output)
                logger.info(f"Saved report to {report_path}")
            except Exception as e:
                logger.error(f"Error saving report: {str(e)}")

        elapsed = (datetime.now() - start_time).total_seconds()
        logger.info(f"Analysis completed in {elapsed:.2f} seconds")
        yield history, report_path if report_path and os.path.exists(report_path) else None

    except Exception as e:
        logger.error(f"Error during analysis: {str(e)}", exc_info=True)
        history[-1] = {"role": "assistant", "content": f"❌ Error during analysis: {str(e)}"}
        yield history, None

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        gr.Markdown("""
        <div style='text-align: center; margin-bottom: 20px;'>
            Upload medical records and receive analysis of potential oversights, including:<br>
            - Missed diagnoses - Medication conflicts - Incomplete assessments - Abnormal results needing follow-up
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                file_upload = gr.File(
                    label="Upload Medical Records",
                    file_types=[".pdf", ".csv", ".xls", ".xlsx"],
                    file_count="multiple",
                    interactive=True
                )
                msg_input = gr.Textbox(
                    placeholder="Ask about potential oversights...",
                    show_label=False,
                    lines=3,
                    max_lines=5
                )
                send_btn = gr.Button("Analyze", variant="primary")
            
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(
                    label="Analysis Results",
                    height=600,
                    bubble_full_width=False,
                    show_copy_button=True
                )
                download_output = gr.File(
                    label="Download Full Report",
                    interactive=False
                )

        # Examples for quick testing
        examples = gr.Examples(
            examples=[
                ["Are there any potential missed diagnoses in these records?"],
                ["What medication conflicts should I be aware of?"],
                ["Are there any incomplete assessments in this case?"]
            ],
            inputs=[msg_input],
            label="Example Questions"
        )

        send_btn.click(
            analyze,
            inputs=[msg_input, gr.State([]), file_upload],
            outputs=[chatbot, download_output]
        )
        msg_input.submit(
            analyze,
            inputs=[msg_input, gr.State([]), file_upload],
            outputs=[chatbot, download_output]
        )

        # Add some footer text
        gr.Markdown("""
        <div style='text-align: center; margin-top: 20px; color: #666; font-size: 0.9em;'>
            Note: This tool provides preliminary analysis only. Always verify findings with complete clinical evaluation.
        </div>
        """)

    return demo

if __name__ == "__main__":
    logger.info("πŸš€ Launching Clinical Oversight Assistant...")
    try:
        agent = init_agent()
        demo = create_ui(agent)
        demo.queue(api_open=False).launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False
        )
    except Exception as e:
        logger.error(f"Failed to launch application: {str(e)}", exc_info=True)
        raise