Spaces:
Runtime error
Runtime error
File size: 3,880 Bytes
c513221 9658a10 9da79fd 5e2c7ed b85438c 9658a10 3b7350e 9658a10 3b7350e 9658a10 3b7350e 9658a10 3b7350e 9658a10 d26a101 9658a10 690f094 9658a10 690f094 c7f120b e284958 690f094 bdf16c0 9658a10 c7f120b 9658a10 c7f120b 690f094 081cd9c 5e2c7ed a04441d 9658a10 081cd9c 9658a10 690f094 bdf16c0 690f094 bdf16c0 f466dd9 c7f120b bdf16c0 c7f120b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import os
import asyncio
from generate_prompts import generate_prompt
from diffusers import AutoPipelineForText2Image
from io import BytesIO
import gradio as gr
async def generate_image(prompt, prompt_name):
try:
print(f"Generating response for {prompt_name} with prompt: {prompt}")
# Load the model instance for each prompt
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
print(f"Output for {prompt_name}: {output}")
# Check if the model returned images
if isinstance(output.images, list) and len(output.images) > 0:
image = output.images[0]
buffered = BytesIO()
try:
image.save(buffered, format="JPEG")
image_bytes = buffered.getvalue()
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
return image_bytes
except Exception as e:
print(f"Error saving image for {prompt_name}: {e}")
return None
else:
raise Exception(f"No images returned by the model for {prompt_name}.")
except Exception as e:
print(f"Error generating image for {prompt_name}: {e}")
return None
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
prompts = []
# Generate prompts for each paragraph
for paragraph_number, sentences in sentence_mapping.items():
combined_sentence = " ".join(sentences)
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
prompts.append((paragraph_number, prompt))
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
# Generate images for each prompt in parallel
tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
print("Tasks created for image generation.")
responses = await asyncio.gather(*tasks)
print("Responses received from image generation tasks.")
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
print(f"Images generated: {images}")
return images
def process_prompt(sentence_mapping, character_dict, selected_style):
print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
try:
# See if there is a loop already running. If there is, reuse it.
loop = asyncio.get_running_loop()
except RuntimeError:
# Create new event loop if one is not running
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
print("Event loop created.")
# This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
print(f"process_prompt completed with return value: {cmpt_return}")
return cmpt_return
# Gradio interface with high concurrency limit
gradio_interface = gr.Interface(
fn=process_prompt,
inputs=[
gr.JSON(label="Sentence Mapping"),
gr.JSON(label="Character Dict"),
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
],
outputs="json"
)
if __name__ == "__main__":
print("Launching Gradio interface...")
gradio_interface.launch()
print("Gradio interface launched.")
|