RanM commited on
Commit
9658a10
·
verified ·
1 Parent(s): a04441d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -27
app.py CHANGED
@@ -1,21 +1,15 @@
1
  import os
2
- import multiprocessing
3
  from generate_prompts import generate_prompt
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
7
- import json
8
 
9
- # Define a function to initialize the model. This will be called in each process.
10
- def initialize_model():
11
- global model
12
- print("Loading the model...")
13
- model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
14
- print("Model loaded successfully.")
15
-
16
- def generate_image(prompt, prompt_name):
17
  try:
18
  print(f"Generating response for {prompt_name} with prompt: {prompt}")
 
 
19
  output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
20
  print(f"Output for {prompt_name}: {output}")
21
 
@@ -27,44 +21,55 @@ def generate_image(prompt, prompt_name):
27
  image.save(buffered, format="JPEG")
28
  image_bytes = buffered.getvalue()
29
  print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
30
- return prompt_name, image_bytes
31
  except Exception as e:
32
  print(f"Error saving image for {prompt_name}: {e}")
33
- return prompt_name, None
34
  else:
35
  raise Exception(f"No images returned by the model for {prompt_name}.")
36
  except Exception as e:
37
  print(f"Error generating image for {prompt_name}: {e}")
38
- return prompt_name, None
39
 
40
- def process_prompts(sentence_mapping, character_dict, selected_style):
41
- print(f"process_prompts called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
42
-
43
  prompts = []
 
 
44
  for paragraph_number, sentences in sentence_mapping.items():
45
  combined_sentence = " ".join(sentences)
46
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
47
- prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
48
  prompts.append((paragraph_number, prompt))
49
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
50
 
51
- with multiprocessing.Pool(initializer=initialize_model) as pool:
52
- tasks = [(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
53
- results = pool.starmap(generate_image, tasks)
 
 
54
 
55
- images = {prompt_name: image for prompt_name, image in results}
56
  print(f"Images generated: {images}")
57
  return images
58
 
59
  def process_prompt(sentence_mapping, character_dict, selected_style):
60
  print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
61
- # Check if inputs are already in dict form
62
- if isinstance(sentence_mapping, str):
63
- sentence_mapping = json.loads(sentence_mapping)
64
- if isinstance(character_dict, str):
65
- character_dict = json.loads(character_dict)
66
- return process_prompts(sentence_mapping, character_dict, selected_style)
 
 
 
 
 
 
 
67
 
 
68
  gradio_interface = gr.Interface(
69
  fn=process_prompt,
70
  inputs=[
 
1
  import os
2
+ import asyncio
3
  from generate_prompts import generate_prompt
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
 
7
 
8
+ async def generate_image(prompt, prompt_name):
 
 
 
 
 
 
 
9
  try:
10
  print(f"Generating response for {prompt_name} with prompt: {prompt}")
11
+ # Load the model instance for each prompt
12
+ model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
13
  output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
14
  print(f"Output for {prompt_name}: {output}")
15
 
 
21
  image.save(buffered, format="JPEG")
22
  image_bytes = buffered.getvalue()
23
  print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
24
+ return image_bytes
25
  except Exception as e:
26
  print(f"Error saving image for {prompt_name}: {e}")
27
+ return None
28
  else:
29
  raise Exception(f"No images returned by the model for {prompt_name}.")
30
  except Exception as e:
31
  print(f"Error generating image for {prompt_name}: {e}")
32
+ return None
33
 
34
+ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
35
+ print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
 
36
  prompts = []
37
+
38
+ # Generate prompts for each paragraph
39
  for paragraph_number, sentences in sentence_mapping.items():
40
  combined_sentence = " ".join(sentences)
41
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
42
+ prompt = generate_prompt(combined_sentence, character_dict, selected_style)
43
  prompts.append((paragraph_number, prompt))
44
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
45
 
46
+ # Generate images for each prompt in parallel
47
+ tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
48
+ print("Tasks created for image generation.")
49
+ responses = await asyncio.gather(*tasks)
50
+ print("Responses received from image generation tasks.")
51
 
52
+ images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
53
  print(f"Images generated: {images}")
54
  return images
55
 
56
  def process_prompt(sentence_mapping, character_dict, selected_style):
57
  print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
58
+ try:
59
+ # See if there is a loop already running. If there is, reuse it.
60
+ loop = asyncio.get_running_loop()
61
+ except RuntimeError:
62
+ # Create new event loop if one is not running
63
+ loop = asyncio.new_event_loop()
64
+ asyncio.set_event_loop(loop)
65
+ print("Event loop created.")
66
+
67
+ # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
68
+ cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
69
+ print(f"process_prompt completed with return value: {cmpt_return}")
70
+ return cmpt_return
71
 
72
+ # Gradio interface with high concurrency limit
73
  gradio_interface = gr.Interface(
74
  fn=process_prompt,
75
  inputs=[