Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,15 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
from generate_prompts import generate_prompt
|
4 |
from diffusers import AutoPipelineForText2Image
|
5 |
from io import BytesIO
|
6 |
import gradio as gr
|
7 |
-
import json
|
8 |
|
9 |
-
|
10 |
-
def initialize_model():
|
11 |
-
global model
|
12 |
-
print("Loading the model...")
|
13 |
-
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
14 |
-
print("Model loaded successfully.")
|
15 |
-
|
16 |
-
def generate_image(prompt, prompt_name):
|
17 |
try:
|
18 |
print(f"Generating response for {prompt_name} with prompt: {prompt}")
|
|
|
|
|
19 |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
20 |
print(f"Output for {prompt_name}: {output}")
|
21 |
|
@@ -27,44 +21,55 @@ def generate_image(prompt, prompt_name):
|
|
27 |
image.save(buffered, format="JPEG")
|
28 |
image_bytes = buffered.getvalue()
|
29 |
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
|
30 |
-
return
|
31 |
except Exception as e:
|
32 |
print(f"Error saving image for {prompt_name}: {e}")
|
33 |
-
return
|
34 |
else:
|
35 |
raise Exception(f"No images returned by the model for {prompt_name}.")
|
36 |
except Exception as e:
|
37 |
print(f"Error generating image for {prompt_name}: {e}")
|
38 |
-
return
|
39 |
|
40 |
-
def
|
41 |
-
print(f"
|
42 |
-
|
43 |
prompts = []
|
|
|
|
|
44 |
for paragraph_number, sentences in sentence_mapping.items():
|
45 |
combined_sentence = " ".join(sentences)
|
46 |
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
|
47 |
-
prompt = generate_prompt(combined_sentence,
|
48 |
prompts.append((paragraph_number, prompt))
|
49 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
54 |
|
55 |
-
images = {
|
56 |
print(f"Images generated: {images}")
|
57 |
return images
|
58 |
|
59 |
def process_prompt(sentence_mapping, character_dict, selected_style):
|
60 |
print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
|
68 |
gradio_interface = gr.Interface(
|
69 |
fn=process_prompt,
|
70 |
inputs=[
|
|
|
1 |
import os
|
2 |
+
import asyncio
|
3 |
from generate_prompts import generate_prompt
|
4 |
from diffusers import AutoPipelineForText2Image
|
5 |
from io import BytesIO
|
6 |
import gradio as gr
|
|
|
7 |
|
8 |
+
async def generate_image(prompt, prompt_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
try:
|
10 |
print(f"Generating response for {prompt_name} with prompt: {prompt}")
|
11 |
+
# Load the model instance for each prompt
|
12 |
+
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
13 |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
14 |
print(f"Output for {prompt_name}: {output}")
|
15 |
|
|
|
21 |
image.save(buffered, format="JPEG")
|
22 |
image_bytes = buffered.getvalue()
|
23 |
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
|
24 |
+
return image_bytes
|
25 |
except Exception as e:
|
26 |
print(f"Error saving image for {prompt_name}: {e}")
|
27 |
+
return None
|
28 |
else:
|
29 |
raise Exception(f"No images returned by the model for {prompt_name}.")
|
30 |
except Exception as e:
|
31 |
print(f"Error generating image for {prompt_name}: {e}")
|
32 |
+
return None
|
33 |
|
34 |
+
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
35 |
+
print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
|
|
|
36 |
prompts = []
|
37 |
+
|
38 |
+
# Generate prompts for each paragraph
|
39 |
for paragraph_number, sentences in sentence_mapping.items():
|
40 |
combined_sentence = " ".join(sentences)
|
41 |
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
|
42 |
+
prompt = generate_prompt(combined_sentence, character_dict, selected_style)
|
43 |
prompts.append((paragraph_number, prompt))
|
44 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
45 |
|
46 |
+
# Generate images for each prompt in parallel
|
47 |
+
tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
|
48 |
+
print("Tasks created for image generation.")
|
49 |
+
responses = await asyncio.gather(*tasks)
|
50 |
+
print("Responses received from image generation tasks.")
|
51 |
|
52 |
+
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
|
53 |
print(f"Images generated: {images}")
|
54 |
return images
|
55 |
|
56 |
def process_prompt(sentence_mapping, character_dict, selected_style):
|
57 |
print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
|
58 |
+
try:
|
59 |
+
# See if there is a loop already running. If there is, reuse it.
|
60 |
+
loop = asyncio.get_running_loop()
|
61 |
+
except RuntimeError:
|
62 |
+
# Create new event loop if one is not running
|
63 |
+
loop = asyncio.new_event_loop()
|
64 |
+
asyncio.set_event_loop(loop)
|
65 |
+
print("Event loop created.")
|
66 |
+
|
67 |
+
# This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
|
68 |
+
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
|
69 |
+
print(f"process_prompt completed with return value: {cmpt_return}")
|
70 |
+
return cmpt_return
|
71 |
|
72 |
+
# Gradio interface with high concurrency limit
|
73 |
gradio_interface = gr.Interface(
|
74 |
fn=process_prompt,
|
75 |
inputs=[
|