Spaces:
Runtime error
Runtime error
File size: 3,977 Bytes
c513221 109adde 9da79fd 5e2c7ed 3a80045 b85438c c14304d b71befa 86743ba c14304d 3b7350e c14304d 3b7350e 109adde 3b7350e 109adde 3b7350e 109adde d26a101 109adde 690f094 109adde 690f094 c7f120b 3a80045 690f094 bdf16c0 3a80045 109adde c7f120b 109adde c7f120b 690f094 081cd9c 5e2c7ed a04441d 109adde c14304d 109adde c14304d 109adde c14304d 109adde 081cd9c 109adde 690f094 bdf16c0 690f094 bdf16c0 f466dd9 c7f120b c14304d c7f120b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import os
import asyncio
from generate_prompts import generate_prompt
from diffusers import AutoPipelineForText2Image
from io import BytesIO
import gradio as gr
from multiprocessing import Pool, cpu_count
# Load the model once outside of the function
print("Loading the model...")
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
print("Model loaded successfully.")
def generate_image(prompt, prompt_name):
try:
print(f"Generating response for {prompt_name} with prompt: {prompt}")
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
print(f"Output for {prompt_name}: {output}")
# Check if the model returned images
if isinstance(output.images, list) and len(output.images) > 0:
image = output.images[0]
buffered = BytesIO()
try:
image.save(buffered, format="JPEG")
image_bytes = buffered.getvalue()
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
return image_bytes
except Exception as e:
print(f"Error saving image for {prompt_name}: {e}")
return None
else:
raise Exception(f"No images returned by the model for {prompt_name}.")
except Exception as e:
print(f"Error generating image for {prompt_name}: {e}")
return None
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
prompts = []
# Generate prompts for each paragraph
for paragraph_number, sentences in sentence_mapping.items():
combined_sentence = " ".join(sentences)
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
prompts.append((paragraph_number, prompt))
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
# Use multiprocessing Pool to generate images in parallel
with Pool(cpu_count()) as pool:
tasks = [(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
responses = pool.starmap(generate_image, tasks)
print("Responses received from image generation tasks.")
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
print(f"Images generated: {images}")
return images
def process_prompt(sentence_mapping, character_dict, selected_style):
print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
try:
# See if there is a loop already running. If there is, reuse it.
loop = asyncio.get_running_loop()
except RuntimeError:
# Create new event loop if one is not running
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
print("Event loop created.")
# This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
print(f"process_prompt completed with return value: {cmpt_return}")
return cmpt_return
# Gradio interface with high concurrency limit
gradio_interface = gr.Interface(
fn=process_prompt,
inputs=[
gr.JSON(label="Sentence Mapping"),
gr.JSON(label="Character Dict"),
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
],
outputs="json"
)
if __name__ == "__main__":
print("Launching Gradio interface...")
gradio_interface.launch()
print("Gradio interface launched.")
|