File size: 3,977 Bytes
c513221
109adde
9da79fd
5e2c7ed
 
 
3a80045
b85438c
c14304d
b71befa
 
 
86743ba
c14304d
3b7350e
 
c14304d
3b7350e
 
 
 
 
 
 
 
 
 
109adde
3b7350e
 
109adde
3b7350e
 
 
 
109adde
d26a101
109adde
 
690f094
109adde
 
690f094
 
c7f120b
3a80045
690f094
 
bdf16c0
3a80045
 
 
 
109adde
c7f120b
109adde
c7f120b
690f094
081cd9c
5e2c7ed
a04441d
109adde
c14304d
109adde
 
c14304d
109adde
 
 
 
c14304d
109adde
 
 
081cd9c
109adde
690f094
bdf16c0
690f094
 
 
 
 
bdf16c0
 
 
f466dd9
c7f120b
c14304d
c7f120b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import asyncio
from generate_prompts import generate_prompt
from diffusers import AutoPipelineForText2Image
from io import BytesIO
import gradio as gr
from multiprocessing import Pool, cpu_count

# Load the model once outside of the function
print("Loading the model...")
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
print("Model loaded successfully.")

def generate_image(prompt, prompt_name):
    try:
        print(f"Generating response for {prompt_name} with prompt: {prompt}")
        output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
        print(f"Output for {prompt_name}: {output}")

        # Check if the model returned images
        if isinstance(output.images, list) and len(output.images) > 0:
            image = output.images[0]
            buffered = BytesIO()
            try:
                image.save(buffered, format="JPEG")
                image_bytes = buffered.getvalue()
                print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
                return image_bytes
            except Exception as e:
                print(f"Error saving image for {prompt_name}: {e}")
                return None
        else:
            raise Exception(f"No images returned by the model for {prompt_name}.")
    except Exception as e:
        print(f"Error generating image for {prompt_name}: {e}")
        return None

async def queue_api_calls(sentence_mapping, character_dict, selected_style):
    print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
    prompts = []

    # Generate prompts for each paragraph
    for paragraph_number, sentences in sentence_mapping.items():
        combined_sentence = " ".join(sentences)
        print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
        prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
        prompts.append((paragraph_number, prompt))
        print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")

    # Use multiprocessing Pool to generate images in parallel
    with Pool(cpu_count()) as pool:
        tasks = [(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
        responses = pool.starmap(generate_image, tasks)
        print("Responses received from image generation tasks.")

    images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
    print(f"Images generated: {images}")
    return images

def process_prompt(sentence_mapping, character_dict, selected_style):
    print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
    try:
        # See if there is a loop already running. If there is, reuse it.
        loop = asyncio.get_running_loop()
    except RuntimeError:
        # Create new event loop if one is not running
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
    print("Event loop created.")

    # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
    cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
    print(f"process_prompt completed with return value: {cmpt_return}")
    return cmpt_return

# Gradio interface with high concurrency limit
gradio_interface = gr.Interface(
    fn=process_prompt,
    inputs=[
        gr.JSON(label="Sentence Mapping"),
        gr.JSON(label="Character Dict"),
        gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
    ],
    outputs="json"
)

if __name__ == "__main__":
    print("Launching Gradio interface...")
    gradio_interface.launch()
    print("Gradio interface launched.")