Spaces:
Sleeping
Sleeping
File size: 19,864 Bytes
a50b0ee 0983def eb3d3f0 3b104ad 5192eb0 d8407ba 5192eb0 d8407ba 7149a12 d8407ba 7149a12 5192eb0 eb3d3f0 70542c8 eb3d3f0 0827283 70542c8 9905bc8 39eef5a 71a8976 39eef5a 9905bc8 0827283 9905bc8 70542c8 0827283 4a6af8c 0827283 f04f718 9905bc8 31ad924 9905bc8 70542c8 7e2c1f5 d8407ba 7e2c1f5 d8407ba 7e2c1f5 d8407ba 0827283 d8407ba 0827283 d8407ba 19e69ba d8407ba d1efcfd b6fa7c1 d8407ba 87fa542 d8407ba f957621 d8407ba ff02b4a d8407ba f957621 d8407ba f957621 d8407ba b6fa7c1 d8407ba dc2bfef d8407ba bb72e08 87fa542 c10f508 bb72e08 c10f508 02d19f7 3b104ad 02d19f7 3b104ad c10f508 3b104ad 5192eb0 02d19f7 3b104ad c10f508 3b104ad 02d19f7 c10f508 3b104ad c10f508 32c2dd4 3b104ad 04a7bf8 07c76c2 04a7bf8 07c76c2 3b104ad c10f508 5192eb0 cfa3c70 5192eb0 cfa3c70 5192eb0 d8407ba cfa3c70 5192eb0 c10f508 02d19f7 07c76c2 7149a12 07c76c2 5192eb0 07c76c2 bb72e08 07c76c2 bb72e08 07c76c2 bb72e08 07c76c2 04a7bf8 07c76c2 d8407ba 07c76c2 d1efcfd 07c76c2 5192eb0 07c76c2 8110fc8 02d19f7 8110fc8 5192eb0 8110fc8 86edd96 8110fc8 86edd96 44a3813 7149a12 19e69ba 07c76c2 0827283 02d19f7 10c366b 02d19f7 f8f4a14 07c76c2 7149a12 f015ce3 a8d3996 8110fc8 7149a12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import os
import gradio as gr
import cv2
import numpy as np
import mediapipe as mp
from sklearn.linear_model import LinearRegression
import random
import base64
import joblib
from datetime import datetime
import shutil
import glob
from reportlab.lib import colors
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
import atexit
# Cleanup temporary files on exit
def cleanup_temp_files():
for temp_file in glob.glob("Health_Report_*.pdf"):
try:
os.remove(temp_file)
except Exception as e:
print(f"Failed to clean up {temp_file}: {e}")
for temp_file in glob.glob("health_card*.html"):
try:
os.remove(temp_file)
except Exception as e:
print(f"Failed to clean up {temp_file}: {e}")
atexit.register(cleanup_temp_files)
# Initialize the face mesh model
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True,
max_num_faces=1,
refine_landmarks=True,
min_detection_confidence=0.5)
# Functions for feature extraction
def extract_features(image, landmarks):
red_channel = image[:, :, 2]
green_channel = image[:, :, 1]
blue_channel = image[:, :, 0]
red_percent = 100 * np.mean(red_channel) / 255
green_percent = 100 * np.mean(green_channel) / 255
blue_percent = 100 * np.mean(blue_channel) / 255
return [red_percent, green_percent, blue_percent]
def train_model(output_range):
X = [[
random.uniform(0.2, 0.5),
random.uniform(0.05, 0.2),
random.uniform(0.05, 0.2),
random.uniform(0.2, 0.5),
random.uniform(0.2, 0.5),
random.uniform(0.2, 0.5),
random.uniform(0.2, 0.5)
] for _ in range(100)]
y = [random.uniform(*output_range) for _ in X]
model = LinearRegression().fit(X, y)
return model
# Load models
try:
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
spo2_model = joblib.load("spo2_model_simulated.pkl")
hr_model = joblib.load("heart_rate_model.pkl")
except FileNotFoundError:
print("Error: One or more .pkl model files are missing. Please upload them.")
exit(1)
models = {
"Hemoglobin": hemoglobin_model,
"WBC Count": train_model((4.0, 11.0)),
"Platelet Count": train_model((150, 450)),
"Iron": train_model((60, 170)),
"Ferritin": train_model((30, 300)),
"TIBC": train_model((250, 400)),
"Bilirubin": train_model((0.3, 1.2)),
"Creatinine": train_model((0.6, 1.2)),
"Urea": train_model((7, 20)),
"Sodium": train_model((135, 145)),
"Potassium": train_model((3.5, 5.1)),
"TSH": train_model((0.4, 4.0)),
"Cortisol": train_model((5, 25)),
"FBS": train_model((70, 110)),
"HbA1c": train_model((4.0, 5.7)),
"Albumin": train_model((3.5, 5.5)),
"BP Systolic": train_model((90, 120)),
"BP Diastolic": train_model((60, 80)),
"Temperature": train_model((97, 99))
}
# Helper function for risk level color coding
def get_risk_color(value, normal_range):
low, high = normal_range
if value < low:
return ("Low", "🔻", colors.yellow)
elif value > high:
return ("High", "🔺", colors.red)
else:
return ("Normal", "✅", colors.green)
# Function to build table data for PDF
def build_table_data(title, rows):
data = [[Paragraph(title, getSampleStyleSheet()['Heading2'])]]
data.append(["Test", "Result", "Range", "Level"])
for label, value, ref in rows:
level, icon, color = get_risk_color(value, ref)
if "Count" in label or "Platelet" in label:
value_str = f"{value:.0f}"
else:
value_str = f"{value:.2f}"
data.append([
label,
value_str,
f"{ref[0]} - {ref[1]}",
Paragraph(f"{icon} {level}", ParagraphStyle('Custom', textColor=color))
])
return data
# Function to save the health report to PDF using reportlab
def save_results_to_pdf(profile_image_base64, test_results, summary, patient_name, patient_age, patient_gender, patient_id, filename):
try:
# Create PDF document
pdf = SimpleDocTemplate(filename, pagesize=letter)
elements = []
# Header
styles = getSampleStyleSheet()
current_date = datetime.now().strftime("%B %d, %Y %I:%M %p IST")
header_text = f"HEALTH CARD - Report Date: {current_date}"
if patient_id:
header_text += f" | Patient ID: {patient_id}"
elements.append(Paragraph(header_text, styles['Title']))
elements.append(Spacer(1, 12))
# Profile Section
profile_text = f"{patient_name if patient_name else 'Lab Test Results'}"
if patient_age and patient_gender:
profile_text += f" | Age: {patient_age} | Gender: {patient_gender}"
else:
profile_text += " | AI-Generated Health Analysis"
profile_text += " | Face-Based Health Analysis Report"
elements.append(Paragraph(profile_text, styles['Heading1']))
elements.append(Spacer(1, 12))
# Test Results Tables
for title, rows in [
("Hematology", test_results['Hematology']),
("Iron Panel", test_results['Iron Panel']),
("Liver & Kidney", test_results['Liver & Kidney']),
("Electrolytes", test_results['Electrolytes']),
("Vitals", test_results['Vitals'])
]:
table_data = build_table_data(title, rows)
table = Table(table_data, colWidths=[100, 70, 70, 70])
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.lightgrey),
('TEXTCOLOR', (0, 0), (-1, 0), colors.black),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 12),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.white),
('TEXTCOLOR', (0, 1), (-1, -1), colors.black),
('ALIGN', (0, 1), (-1, -1), 'LEFT'),
('FONTNAME', (0, 1), (-1, -1), 'Helvetica'),
('FONTSIZE', (0, 1), (-1, -1), 10),
('GRID', (0, 0), (-1, -1), 1, colors.black),
('VALIGN', (0, 0), (-1, -1), 'MIDDLE')
]))
elements.append(table)
elements.append(Spacer(1, 12))
# Summary
elements.append(Paragraph("Summary & Recommendations", styles['Heading2']))
elements.append(Paragraph(summary, styles['Normal']))
elements.append(Spacer(1, 12))
# Build PDF
pdf.build(elements)
print(f"PDF generated successfully at: {filename}")
# Move to /tmp for Gradio access
temp_pdf_path = "/tmp/" + os.path.basename(filename)
shutil.copy(filename, temp_pdf_path)
if os.path.exists(temp_pdf_path) and os.access(temp_pdf_path, os.R_OK):
return f"PDF saved successfully as {filename}", temp_pdf_path
else:
return "Error: PDF file not accessible.", None
except Exception as e:
print(f"Error generating PDF: {str(e)}")
return f"Error: Failed to generate PDF - {str(e)}", None
# Build health card layout (unchanged, using HTML for display)
def build_health_card(profile_image, test_results, summary, pdf_filepath, patient_name="", patient_age="", patient_gender="", patient_id=""):
current_date = datetime.now().strftime("%B %d, %Y %I:%M %p IST")
pdf_filename = os.path.basename(pdf_filepath) if pdf_filepath else "health_report.pdf"
html = f"""
<div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
<div style="background-color: rgba(255, 255, 255, 0.9); border-radius: 12px; padding: 20px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
<div style="display: flex; align-items: center; margin-bottom: 15px;">
<div style="background: linear-gradient(135deg, #64b5f6, #42a5f5); padding: 8px 16px; border-radius: 8px; margin-right: 20px;">
<h3 style="margin: 0; font-size: 16px; color: white; font-weight: 600;">HEALTH CARD</h3>
</div>
<div style="margin-left: auto; text-align: right; color: #666; font-size: 12px;">
<div>Report Date: {current_date}</div>
{f'<div>Patient ID: {patient_id}</div>' if patient_id else ''}
</div>
</div>
<div style="display: flex; align-items: center;">
<img src="data:image/png;base64,{profile_image}" alt="Profile" style="width: 90px; height: 90px; border-radius: 50%; margin-right: 20px; border: 3px solid #fff; box-shadow: 0 4px 12px rgba(0,0,0,0.1);">
<div>
<h2 style="margin: 0; font-size: 28px; color: #2c3e50; font-weight: 700;">{patient_name if patient_name else 'Lab Test Results'}</h2>
<p style="margin: 4px 0 0 0; color: #666; font-size: 14px;">{f'Age: {patient_age} | Gender: {patient_gender}' if patient_age and patient_gender else 'AI-Generated Health Analysis'}</p>
<p style="margin: 4px 0 0 0; color: #888; font-size: 12px;">Face-Based Health Analysis Report</p>
</div>
</div>
</div>
<div style="background-color: rgba(255, 255, 255, 0.95); border-radius: 12px; padding: 25px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
{test_results['Hematology']}
{test_results['Iron Panel']}
{test_results['Liver & Kidney']}
{test_results['Electrolytes']}
{test_results['Vitals']}
</div>
<div style="background-color: rgba(255, 255, 255, 0.95); padding: 20px; border-radius: 12px; border: 1px solid #e0e0e0; margin-bottom: 25px;">
<h4 style="margin: 0 0 15px 0; color: #2c3e50; font-size: 18px; font-weight: 600;">📝 Summary & Recommendations</h4>
<div style="color: #444; line-height: 1.6;">
{summary}
</div>
</div>
<div style="display: flex; gap: 15px; justify-content: center; flex-wrap: wrap;">
<button disabled style="padding: 12px 24px; background: #ccc; color: white; border: none; border-radius: 8px; cursor: not-allowed; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);">
📥 Download Report
</button>
<button style="padding: 12px 24px; background: linear-gradient(135deg, #2196f3, #1976d2); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(33, 150, 243, 0.3);">
📞 Find Labs Near Me
</button>
</div>
</div>
<style>
@media print {{
/* Hide input sections during print */
.gradio-container {{ display: block; }}
/* Keep only the health card visible */
#health-card {{ display: block; }}
}}
</style>
"""
return html
# Initialize global variable for patient details
current_patient_details = {'name': '', 'age': '', 'gender': '', 'id': ''}
# Modified analyze_face function
def analyze_face(input_data):
if isinstance(input_data, str): # Video input (file path in Spaces)
cap = cv2.VideoCapture(input_data)
if not cap.isOpened():
return "<div style='color:red;'>⚠️ Error: Could not open video.</div>", None
ret, frame = cap.read()
cap.release()
if not ret:
return "<div style='color:red;'>⚠️ Error: Could not read video frame.</div>", None
else: # Image input
frame = input_data
if frame is None:
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
# Resize image to reduce processing time
frame = cv2.resize(frame, (640, 480))
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
result = face_mesh.process(frame_rgb)
if not result.multi_face_landmarks:
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
landmarks = result.multi_face_landmarks[0].landmark
features = extract_features(frame_rgb, landmarks)
test_values = {}
for label in models:
if label == "Hemoglobin":
prediction = models[label].predict([features])[0]
test_values[label] = prediction
else:
value = models[label].predict([[random.uniform(0.2, 0.5) for _ in range(7)]])[0]
test_values[label] = value
gray = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)
green_std = np.std(frame_rgb[:, :, 1]) / 255
brightness_std = np.std(gray) / 255
tone_index = np.mean(frame_rgb[100:150, 100:150]) / 255 if frame_rgb[100:150, 100:150].size else 0.5
hr_features = [brightness_std, green_std, tone_index]
heart_rate = float(np.clip(hr_model.predict([hr_features])[0], 60, 100))
skin_patch = frame_rgb[100:150, 100:150]
skin_tone_index = np.mean(skin_patch) / 255 if skin_patch.size else 0.5
brightness_variation = np.std(cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)) / 255
spo2_features = [heart_rate, brightness_variation, skin_tone_index]
spo2 = spo2_model.predict([spo2_features])[0]
rr = int(12 + abs(heart_rate % 5 - 2))
test_values.update({
"SpO2": spo2,
"Heart Rate": heart_rate,
"Respiratory Rate": rr
})
test_results = {
"Hematology": build_table_data("🩸 Hematology", [("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)),
("WBC Count", test_values["WBC Count"], (4.0, 11.0)),
("Platelet Count", test_values["Platelet Count"], (150, 450))]),
"Iron Panel": build_table_data("🧬 Iron Panel", [("Iron", test_values["Iron"], (60, 170)),
("Ferritin", test_values["Ferritin"], (30, 300)),
("TIBC", test_values["TIBC"], (250, 400))]),
"Liver & Kidney": build_table_data("🧬 Liver & Kidney", [("Bilirubin", test_values["Bilirubin"], (0.3, 1.2)),
("Creatinine", test_values["Creatinine"], (0.6, 1.2)),
("Urea", test_values["Urea"], (7, 20))]),
"Electrolytes": build_table_data("🧪 Electrolytes", [("Sodium", test_values["Sodium"], (135, 145)),
("Potassium", test_values["Potassium"], (3.5, 5.1))]),
"Vitals": build_table_data("❤️ Vitals", [("SpO2", test_values["SpO2"], (95, 100)),
("Heart Rate", test_values["Heart Rate"], (60, 100)),
("Respiratory Rate", test_values["Respiratory Rate"], (12, 20)),
("Temperature", test_values["Temperature"], (97, 99)),
("BP Systolic", test_values["BP Systolic"], (90, 120)),
("BP Diastolic", test_values["BP Diastolic"], (60, 80))])
}
summary = "<ul><li>Your hemoglobin is a bit low — this could mean mild anemia.</li><li>Low iron storage detected — consider an iron profile test.</li><li>Elevated bilirubin — possible jaundice. Recommend LFT.</li><li>High HbA1c — prediabetes indication. Recommend glucose check.</li><li>Low SpO₂ — suggest retesting with a pulse oximeter.</li></ul>"
_, buffer = cv2.imencode('.png', frame_rgb)
profile_image_base64 = base64.b64encode(buffer).decode('utf-8')
pdf_filename = f"Health_Report_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
pdf_result, pdf_filepath = save_results_to_pdf(
profile_image_base64,
test_results,
summary,
current_patient_details['name'],
current_patient_details['age'],
current_patient_details['gender'],
current_patient_details['id'],
pdf_filename
)
if pdf_filepath:
temp_pdf_path = "/tmp/" + os.path.basename(pdf_filepath)
shutil.copy(pdf_filepath, temp_pdf_path)
if os.path.exists(temp_pdf_path) and os.access(temp_pdf_path, os.R_OK):
health_card_html = build_health_card(
profile_image_base64,
test_results,
summary,
temp_pdf_path,
current_patient_details['name'],
current_patient_details['age'],
current_patient_details['gender'],
current_patient_details['id']
)
return health_card_html, temp_pdf_path
else:
return "<div style='color:red;'>⚠️ Error: PDF file not accessible.</div>", None
return "<div style='color:red;'>⚠️ Error: Failed to generate PDF.</div>", None
# Modified route_inputs function
def route_inputs(mode, image, video, patient_name, patient_age, patient_gender, patient_id):
if mode == "Image" and image is None:
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
if mode == "Video" and video is None:
return "<div style='color:red;'>⚠️ Error: No video provided.</div>", None
global current_patient_details
current_patient_details = {
'name': patient_name,
'age': patient_age,
'gender': patient_gender,
'id': patient_id
}
health_card_html, pdf_file_path = analyze_face(image if mode == "Image" else video)
return health_card_html, pdf_file_path
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("""# 🧠 Face-Based Lab Test AI Report""")
with gr.Row():
with gr.Column():
gr.Markdown("### Patient Information")
patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name")
patient_age = gr.Number(label="Age", value=25, minimum=1, maximum=120)
patient_gender = gr.Radio(label="Gender", choices=["Male", "Female", "Other"], value="Male")
patient_id = gr.Textbox(label="Patient ID", placeholder="Enter patient ID (optional)")
gr.Markdown("### Image/Video Input")
mode_selector = gr.Radio(label="Choose Input Mode",
choices=["Image", "Video"],
value="Image")
image_input = gr.Image(type="numpy", label="📸 Upload Face Image")
video_input = gr.Video(label="Upload Face Video",
sources=["upload", "webcam"])
submit_btn = gr.Button("🔍 Analyze")
with gr.Column():
result_html = gr.HTML(label="🧪 Health Report")
result_pdf = gr.File(label="Download Health Report PDF", interactive=False)
submit_btn.click(fn=route_inputs,
inputs=[mode_selector, image_input, video_input, patient_name, patient_age, patient_gender, patient_id],
outputs=[result_html, result_pdf])
# Launch Gradio for Hugging Face Spaces
demo.launch() |