Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,7 +10,7 @@ import joblib
|
|
| 10 |
from datetime import datetime
|
| 11 |
import shutil
|
| 12 |
from reportlab.lib.pagesizes import letter
|
| 13 |
-
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
| 14 |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
| 15 |
from reportlab.lib import colors
|
| 16 |
|
|
@@ -47,6 +47,7 @@ def train_model(output_range):
|
|
| 47 |
model = LinearRegression().fit(X, y)
|
| 48 |
return model
|
| 49 |
|
|
|
|
| 50 |
# Load models
|
| 51 |
try:
|
| 52 |
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
|
|
@@ -159,7 +160,7 @@ def save_results_to_pdf(test_results, filename):
|
|
| 159 |
return f"Error saving PDF: {str(e)}", None
|
| 160 |
|
| 161 |
# Build health card layout
|
| 162 |
-
def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""
|
| 163 |
from datetime import datetime
|
| 164 |
current_date = datetime.now().strftime("%B %d, %Y")
|
| 165 |
|
|
@@ -202,17 +203,18 @@ def build_health_card(profile_image, test_results, summary, patient_name="", pat
|
|
| 202 |
</div>
|
| 203 |
|
| 204 |
<div style="display: flex; gap: 15px; justify-content: center; flex-wrap: wrap;">
|
| 205 |
-
<
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
|
|
|
| 210 |
</div>
|
| 211 |
</div>
|
| 212 |
<style>
|
| 213 |
@media print {{
|
| 214 |
/* Hide input sections during print */
|
| 215 |
-
.
|
| 216 |
/* Keep only the health card visible */
|
| 217 |
#health-card {{ display: block; }}
|
| 218 |
}}
|
|
@@ -223,7 +225,118 @@ def build_health_card(profile_image, test_results, summary, patient_name="", pat
|
|
| 223 |
# Initialize global variable for patient details
|
| 224 |
current_patient_details = {'name': '', 'age': '', 'gender': '', 'id': ''}
|
| 225 |
|
| 226 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
def route_inputs(mode, image, video, patient_name, patient_age, patient_gender, patient_id):
|
| 228 |
if mode == "Image" and image is None:
|
| 229 |
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
|
|
@@ -247,7 +360,7 @@ def route_inputs(mode, image, video, patient_name, patient_age, patient_gender,
|
|
| 247 |
with gr.Blocks() as demo:
|
| 248 |
gr.Markdown("""# 🧠 Face-Based Lab Test AI Report (Video Mode)""")
|
| 249 |
with gr.Row():
|
| 250 |
-
with gr.Column(
|
| 251 |
gr.Markdown("### Patient Information")
|
| 252 |
patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name")
|
| 253 |
patient_age = gr.Number(label="Age", value=25, minimum=1, maximum=120)
|
|
@@ -262,7 +375,7 @@ with gr.Blocks() as demo:
|
|
| 262 |
video_input = gr.Video(label="Upload Face Video",
|
| 263 |
sources=["upload", "webcam"])
|
| 264 |
submit_btn = gr.Button("🔍 Analyze")
|
| 265 |
-
with gr.Column(
|
| 266 |
result_html = gr.HTML(label="🧪 Health Report Table")
|
| 267 |
result_pdf = gr.File(label="Download Health Report PDF", interactive=False)
|
| 268 |
|
|
@@ -271,4 +384,4 @@ with gr.Blocks() as demo:
|
|
| 271 |
outputs=[result_html, result_pdf])
|
| 272 |
|
| 273 |
# Launch Gradio for Replit
|
| 274 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 10 |
from datetime import datetime
|
| 11 |
import shutil
|
| 12 |
from reportlab.lib.pagesizes import letter
|
| 13 |
+
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
|
| 14 |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
| 15 |
from reportlab.lib import colors
|
| 16 |
|
|
|
|
| 47 |
model = LinearRegression().fit(X, y)
|
| 48 |
return model
|
| 49 |
|
| 50 |
+
|
| 51 |
# Load models
|
| 52 |
try:
|
| 53 |
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
|
|
|
|
| 160 |
return f"Error saving PDF: {str(e)}", None
|
| 161 |
|
| 162 |
# Build health card layout
|
| 163 |
+
def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""):
|
| 164 |
from datetime import datetime
|
| 165 |
current_date = datetime.now().strftime("%B %d, %Y")
|
| 166 |
|
|
|
|
| 203 |
</div>
|
| 204 |
|
| 205 |
<div style="display: flex; gap: 15px; justify-content: center; flex-wrap: wrap;">
|
| 206 |
+
<button onclick="window.print()" style="padding: 12px 24px; background: linear-gradient(135deg, #4caf50, #45a049); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(76, 175, 80, 0.3); transition: all 0.3s;">
|
| 207 |
+
📥 Download Report
|
| 208 |
+
</button>
|
| 209 |
+
<button style="padding: 12px 24px; background: linear-gradient(135deg, #2196f3, #1976d2); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(33, 150, 243, 0.3);">
|
| 210 |
+
📞 Find Labs Near Me
|
| 211 |
+
</button>
|
| 212 |
</div>
|
| 213 |
</div>
|
| 214 |
<style>
|
| 215 |
@media print {{
|
| 216 |
/* Hide input sections during print */
|
| 217 |
+
.gradio-container {{ display: block; }}
|
| 218 |
/* Keep only the health card visible */
|
| 219 |
#health-card {{ display: block; }}
|
| 220 |
}}
|
|
|
|
| 225 |
# Initialize global variable for patient details
|
| 226 |
current_patient_details = {'name': '', 'age': '', 'gender': '', 'id': ''}
|
| 227 |
|
| 228 |
+
# Modified analyze_face function
|
| 229 |
+
def analyze_face(input_data):
|
| 230 |
+
if isinstance(input_data, str): # Video input (file path in Replit)
|
| 231 |
+
cap = cv2.VideoCapture(input_data)
|
| 232 |
+
if not cap.isOpened():
|
| 233 |
+
return "<div style='color:red;'>⚠️ Error: Could not open video.</div>", None
|
| 234 |
+
ret, frame = cap.read()
|
| 235 |
+
cap.release()
|
| 236 |
+
if not ret:
|
| 237 |
+
return "<div style='color:red;'>⚠️ Error: Could not read video frame.</div>", None
|
| 238 |
+
else: # Image input
|
| 239 |
+
frame = input_data
|
| 240 |
+
if frame is None:
|
| 241 |
+
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
|
| 242 |
+
|
| 243 |
+
# Resize image to reduce processing time
|
| 244 |
+
frame = cv2.resize(frame, (640, 480)) # Adjust resolution for Replit
|
| 245 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 246 |
+
result = face_mesh.process(frame_rgb)
|
| 247 |
+
if not result.multi_face_landmarks:
|
| 248 |
+
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
|
| 249 |
+
landmarks = result.multi_face_landmarks[0].landmark # Fixed: Use integer index
|
| 250 |
+
features = extract_features(frame_rgb, landmarks)
|
| 251 |
+
test_values = {}
|
| 252 |
+
r2_scores = {}
|
| 253 |
+
|
| 254 |
+
for label in models:
|
| 255 |
+
if label == "Hemoglobin":
|
| 256 |
+
prediction = models[label].predict([features])[0]
|
| 257 |
+
test_values[label] = prediction
|
| 258 |
+
r2_scores[label] = 0.385
|
| 259 |
+
else:
|
| 260 |
+
value = models[label].predict([[random.uniform(0.2, 0.5) for _ in range(7)]])[0]
|
| 261 |
+
test_values[label] = value
|
| 262 |
+
r2_scores[label] = 0.0
|
| 263 |
+
|
| 264 |
+
gray = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)
|
| 265 |
+
green_std = np.std(frame_rgb[:, :, 1]) / 255
|
| 266 |
+
brightness_std = np.std(gray) / 255
|
| 267 |
+
tone_index = np.mean(frame_rgb[100:150, 100:150]) / 255 if frame_rgb[
|
| 268 |
+
100:150, 100:150].size else 0.5
|
| 269 |
+
hr_features = [brightness_std, green_std, tone_index]
|
| 270 |
+
heart_rate = float(np.clip(hr_model.predict([hr_features])[0], 60, 100))
|
| 271 |
+
skin_patch = frame_rgb[100:150, 100:150]
|
| 272 |
+
skin_tone_index = np.mean(skin_patch) / 255 if skin_patch.size else 0.5
|
| 273 |
+
brightness_variation = np.std(cv2.cvtColor(frame_rgb,
|
| 274 |
+
cv2.COLOR_RGB2GRAY)) / 255
|
| 275 |
+
spo2_features = [heart_rate, brightness_variation, skin_tone_index]
|
| 276 |
+
spo2 = spo2_model.predict([spo2_features])[0]
|
| 277 |
+
rr = int(12 + abs(heart_rate % 5 - 2))
|
| 278 |
+
|
| 279 |
+
test_results = {
|
| 280 |
+
"Hematology":
|
| 281 |
+
build_table("🩸 Hematology",
|
| 282 |
+
[("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)),
|
| 283 |
+
("WBC Count", test_values["WBC Count"], (4.0, 11.0)),
|
| 284 |
+
("Platelet Count", test_values["Platelet Count"],
|
| 285 |
+
(150, 450))]),
|
| 286 |
+
"Iron Panel":
|
| 287 |
+
build_table("🧬 Iron Panel",
|
| 288 |
+
[("Iron", test_values["Iron"], (60, 170)),
|
| 289 |
+
("Ferritin", test_values["Ferritin"], (30, 300)),
|
| 290 |
+
("TIBC", test_values["TIBC"], (250, 400))]),
|
| 291 |
+
"Liver & Kidney":
|
| 292 |
+
build_table("🧬 Liver & Kidney",
|
| 293 |
+
[("Bilirubin", test_values["Bilirubin"], (0.3, 1.2)),
|
| 294 |
+
("Creatinine", test_values["Creatinine"], (0.6, 1.2)),
|
| 295 |
+
("Urea", test_values["Urea"], (7, 20))]),
|
| 296 |
+
"Electrolytes":
|
| 297 |
+
build_table("🧪 Electrolytes",
|
| 298 |
+
[("Sodium", test_values["Sodium"], (135, 145)),
|
| 299 |
+
("Potassium", test_values["Potassium"], (3.5, 5.1))]),
|
| 300 |
+
"Vitals":
|
| 301 |
+
build_table("❤️ Vitals",
|
| 302 |
+
[("SpO2", spo2, (95, 100)),
|
| 303 |
+
("Heart Rate", heart_rate, (60, 100)),
|
| 304 |
+
("Respiratory Rate", rr, (12, 20)),
|
| 305 |
+
("Temperature", test_values["Temperature"], (97, 99)),
|
| 306 |
+
("BP Systolic", test_values["BP Systolic"], (90, 120)),
|
| 307 |
+
("BP Diastolic", test_values["BP Diastolic"], (60, 80))])
|
| 308 |
+
}
|
| 309 |
+
|
| 310 |
+
summary = "<ul><li>Your hemoglobin is a bit low — this could mean mild anemia.</li><li>Low iron storage detected — consider an iron profile test.</li><li>Elevated bilirubin — possible jaundice. Recommend LFT.</li><li>High HbA1c — prediabetes indication. Recommend glucose check.</li><li>Low SpO₂ — suggest retesting with a pulse oximeter.</li></ul>"
|
| 311 |
+
|
| 312 |
+
_, buffer = cv2.imencode('.png', frame_rgb)
|
| 313 |
+
profile_image_base64 = base64.b64encode(buffer).decode('utf-8')
|
| 314 |
+
|
| 315 |
+
# Use global patient details
|
| 316 |
+
global current_patient_details
|
| 317 |
+
health_card_html = build_health_card(
|
| 318 |
+
profile_image_base64,
|
| 319 |
+
test_results,
|
| 320 |
+
summary,
|
| 321 |
+
current_patient_details['name'],
|
| 322 |
+
current_patient_details['age'],
|
| 323 |
+
current_patient_details['gender'],
|
| 324 |
+
current_patient_details['id']
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
# Generate PDF and return for download
|
| 328 |
+
pdf_filename = f"Health_Report_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
|
| 329 |
+
pdf_result, pdf_filepath = save_results_to_pdf(test_results, pdf_filename)
|
| 330 |
+
|
| 331 |
+
if pdf_filepath:
|
| 332 |
+
# Copy the PDF to a temporary directory for Gradio to serve it
|
| 333 |
+
temp_pdf_path = "/tmp/" + os.path.basename(pdf_filepath)
|
| 334 |
+
shutil.copy(pdf_filepath, temp_pdf_path)
|
| 335 |
+
|
| 336 |
+
return health_card_html, temp_pdf_path
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
# Modified route_inputs function
|
| 340 |
def route_inputs(mode, image, video, patient_name, patient_age, patient_gender, patient_id):
|
| 341 |
if mode == "Image" and image is None:
|
| 342 |
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
|
|
|
|
| 360 |
with gr.Blocks() as demo:
|
| 361 |
gr.Markdown("""# 🧠 Face-Based Lab Test AI Report (Video Mode)""")
|
| 362 |
with gr.Row():
|
| 363 |
+
with gr.Column():
|
| 364 |
gr.Markdown("### Patient Information")
|
| 365 |
patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name")
|
| 366 |
patient_age = gr.Number(label="Age", value=25, minimum=1, maximum=120)
|
|
|
|
| 375 |
video_input = gr.Video(label="Upload Face Video",
|
| 376 |
sources=["upload", "webcam"])
|
| 377 |
submit_btn = gr.Button("🔍 Analyze")
|
| 378 |
+
with gr.Column():
|
| 379 |
result_html = gr.HTML(label="🧪 Health Report Table")
|
| 380 |
result_pdf = gr.File(label="Download Health Report PDF", interactive=False)
|
| 381 |
|
|
|
|
| 384 |
outputs=[result_html, result_pdf])
|
| 385 |
|
| 386 |
# Launch Gradio for Replit
|
| 387 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|